WZ
Wen Zhang
Author with expertise in Diagnosis and Management of Alzheimer's Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
3
h-index:
25
/
i10-index:
50
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cortical and Subcortical Gray Matter Abnormalities in Mild Cognitive Impairment

Junxia Wang et al.Jul 1, 2024
Gray matter changes are thought to be closely related to cognitive decline in mild cognitive impairment (MCI) patients. The study aimed to explore cortical and subcortical structural alterations in MCI and their association with cognitive assessment. 24 MCI patients and 22 normal controls (NCs) were included. Voxel-based morphometry (VBM), vertex-based shape analysis and surface-based morphometry (SBM) analysis were applied to explore subcortical nuclei volume, shape and cortical morphology. Correlations between structural changes and cognition were explored using spearman correlation analysis. Support vector machine (SVM) classification evaluated MCI identification accuracy. MCI patients showed significant atrophy in the left thalamus, left hippocampus, left amygdala, right pallidum, right hippocampus, along with inward deformation in the left amygdala. SBM analysis revealed that MCI group exhibited shallower sulci depth in the left hemisphere and increased cortical gyrification index (GI) in the right frontal gyrus. Correlation analysis showed the positive correlation between right hippocampus volume and episodic memory, while negative correlation between the altered GI and memory performance in MCI group. SVM analysis demonstrated superior performance of sulci depth and GI derived from SBM in MCI identification. When combined with cortical and subcortical metrics, SVM achieved a peak accuracy of 89 % in distinguishing MCI from NC. The study reveals significant gray matter structural changes in MCI, suggesting their potential role in underlying functional differences and neural mechanisms behind memory impairment in MCI.
2

Volumetric Compression Shifts Rho GTPase Balance and Induces Mechanobiological Cell State Transition

Xiangyu Gong et al.Oct 10, 2023
Abstract During development and disease progression, cells are subject to osmotic and mechanical stresses that modulate cell volume, which fundamentally influences cell homeostasis and has been linked to a variety of cellular functions. It is not well understood how the mechanobiological state of cells is programmed by the interplay of intracellular organization and complex extracellular mechanics when stimulated by cell volume modulation. Here, by controlling cell volume via osmotic pressure, we evaluate physical phenotypes (including cell shape, morphodynamics, traction force, and extracellular matrix (ECM) remodeling) and molecular signaling (YAP), and we uncover fundamental transitions in active biophysical states. We demonstrate that volumetric compression shifts the ratiometric balance of Rho GTPase activities, thereby altering mechanosensing and cytoskeletal organization in a reversible manner. Specifically, volumetric compression controls cell spreading, adhesion formation, and YAP nuclear translocation, while maintaining cell contractile activity. Furthermore, we show that on physiologically relevant fibrillar collagen I matrices, which are highly non-elastic, cells exhibit additional modes of cell volume-dependent mechanosensing that are not observable on elastic substrates. Notably, volumetric compression regulates the dynamics of cell-ECM interactions and irreversible ECM remodeling via Rac-directed protrusion dynamics, at both the single-cell level and the multicellular level. Our findings support that cell volume is a master biophysical regulator and reveal its roles in cell mechanical state transition, cell-ECM interactions, and biophysical tissue programming.