HJ
Hanzhong Jia
Author with expertise in Microplastic Pollution in Marine and Terrestrial Environments
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(7% Open Access)
Cited by:
1,576
h-index:
50
/
i10-index:
135
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species

Kecheng Zhu et al.Jan 29, 2020
Microplastics may experience photoaging and breakdown into nanoplastics in aquatic environment as a result of long-term light irradiation. However, the underlying mechanisms responsible for the photodegradation of microplastics are largely overlooked. In this study, the photodegradation of microplastics, utilizing polystyrene microplastic (PS-MP) as a model, was investigated under irradiation with simulated solar light for as long as 150 d. A large amount of reactive oxygen species (ROS), including O2•-, 1O2, H2O2 and •OH, were detected in the PS-MP suspension due to light irradiation, which displayed significant relationships with the generated environmentally persistent free radicals (EPFRs). Distinct photoaging of PS-MP was observed with increased surface roughness and decreased particle size. However, these photoaging effects were significantly inhibited by ROS quenchers, suggesting that the generation ROS played a vital role in the PS-MP phototransformation. In addition, ROS induced formation of more oxidative functional groups on the PS-MP, thus enhancing the negative surface potential and the stability of PS-MP in water. This study elucidated the mechanism of formation of ROS by simulated solar light irradiated MPs and their subsequent roles in the phototransformation of MP, thus expanding current knowledge on the fate of MPs in aquatic environments.
0
Citation401
0
Save
0

Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation

Kecheng Zhu et al.Jun 17, 2019
Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044–2.0049 and 2.0043–2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O2/H2O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O2•– and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems.
0

The mechanism differences between sulfadiazine degradation and antibiotic resistant bacteria inactivation by iron-based graphitic biochar and peroxydisulfate system

Yanbing Ma et al.Jun 13, 2024
In this study, the activation of peroxydisulfate (PS) by K2FeO4-activation biochar (KFeB) and acid-picking K2FeO4-activation biochar (AKFeB) was investigated to reveal the mechanism differences between iron site and graphitic structure in sulfadiazine (SDZ) degradation and ARB inactivation, respectively. KFeB/PS and AKFeB/PS systems had similar degradation property towards SDZ, but only KFeB/PS system showed excellent bactericidal property. The mechanism study demonstrated that dissolved SDZ was degraded through electron transfer pathway mediated by graphitic structure, while suspended ARB was inactivated through free radicals generated by iron-activated PS, accompanied by excellent removal on antibiotic resistance genes (ARGs). The significant decrease in conjugative transfer frequency indicated the reduced horizontal gene transfer risk of ARGs after treatment with KFeB/PS system. Transcriptome data suggested that membrane protein channel disruption and adenosine triphosphate synthesis inhibition were key reasons for conjugative transfer frequency reduction. Continuous flow reactor of KFeB/PS system can efficiently remove antibiotics and ARB, implying the potential application in practical wastewater purification. In conclusion, this study provides novel insights for classified and collaborative control of antibiotics and ARB by carbon-based catalysts driven persulfate advanced oxidation technology.
0
Citation4
0
Save
0

Spatiotemporal dynamics of reactive oxygen species and its effect on beta-blockers’ degradation in aquatic plants’ rhizosphere

He Ji et al.Jul 7, 2024
The pathway for pollutant degradation involving reactive oxygen species (ROS) in the rhizosphere is poorly understood. Herein, a rootchip system was developed to pinpoint the ROS hotspot along the root tip of Iris tectorum. Through mass balance analysis and quenching experiment, we revealed that ROS contributed significantly to rhizodegradation for beta-blockers, ranging from 22.18% for betaxolol to 83.83% for atenolol. The identification of degradation products implicated ROS as an important agent to degrade atenolol into less toxic transformation products during phytoremediation. Moreover, an active production of ROS in rhizosphere was identified by mesocosm experiment. Across three root-associated regions aquatic plants inhabiting the rhizosphere accumulated the highest •OH of ~1200 nM after 3 consecutive days, followed by rhizoplane (~230 nM) and bulk environment (~60 nM). ROS production patterns were driven by rhizosphere chemistry (Fe and humic substances) and microbiome variations in different rhizocompartments. These findings not only deepen understanding of ROS production in aquatic plants rhizosphere but also shed light on advancing phytoremediation strategies. Beta-blockers are emerging pollutants extensively detected in aquatic environments that pose toxicological threat to biota. Three established pathways for beta-blockers' degradation in the rhizosphere (enrichment, metabolism, and microbial degradation) are well-documented. Yet, the fourth pathway involving reactive oxygen species (ROS) lacks mechanistic and quantitative understanding. In this study, we illuminate the crucial role of ROS in rhizosphere to transform beta-blockers and provide a comprehensive investigation into the intricate interplay of aquatic plants, microbiome and ROS dynamics in aquatic ecosystem. These findings suggest that the capability of ROS production in rhizosphere might be an important pre-requisite to plant species selection.
0

Manganese Dioxides Induce the Transformation and Protection of Dissolved Organic Matter Simultaneously: A Significance of Crystallinity

Zhiqiang Wang et al.Jan 9, 2025
Interactions between manganese dioxides (MnO2) and dissolved organic matter (DOM) have long been the subject of scientific inquiry. However, the effect of MnO2 crystallinity on the DOM fate remains unclear. Herein, we comprehensively investigate the adsorption, protection, and mineralization of DOM by MnO2 with various crystallinities (order of crystallinity: γ-30 < γ-90 < γ-120). The results show that DOM adsorption is positively correlated with the specific surface area (SSA) of MnO2; γ-30 with the largest SSA adsorbs the highest amount of DOM, resulting in DOM protection. However, γ-90 and γ-120 with a smaller SSA could induce the Maillard reaction and thereby promote the formation of geopolymerized organic matter, leading to reduced bioavailability of DOM. Furthermore, the capability of MnO2 to mineralize DOM decreases in the order γ-120 > γ-90 > γ-30, and it is determined by both Mn4+ and hydroxyl radical (·OH) content. In particular, the contribution of radical-based oxidation of ·OH to DOM mineralization is 64.8, 47.4, and 23.7% for γ-30, γ-90, and γ-120, respectively. We propose that crystallinity of MnO2 may have a significant but hitherto unexplored influence on the global carbon cycle over geological time.
Load More