JC
Jian‐Feng Cai
Author with expertise in Theory and Applications of Compressed Sensing
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(64% Open Access)
Cited by:
8,054
h-index:
41
/
i10-index:
73
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Singular Value Thresholding Algorithm for Matrix Completion

Jian‐Feng Cai et al.Jan 1, 2010
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem and arises in many important applications as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Off-the-shelf algorithms such as interior point methods are not directly amenable to large problems of this kind with over a million unknown entries. This paper develops a simple first-order and easy-to-implement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative, produces a sequence of matrices $\{\boldsymbol{X}^k,\boldsymbol{Y}^k\}$, and at each step mainly performs a soft-thresholding operation on the singular values of the matrix $\boldsymbol{Y}^k$. There are two remarkable features making this attractive for low-rank matrix completion problems. The first is that the soft-thresholding operation is applied to a sparse matrix; the second is that the rank of the iterates $\{\boldsymbol{X}^k\}$ is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal storage space and keep the computational cost of each iteration low. On the theoretical side, we provide a convergence analysis showing that the sequence of iterates converges. On the practical side, we provide numerical examples in which $1,000\times1,000$ matrices are recovered in less than a minute on a modest desktop computer. We also demonstrate that our approach is amenable to very large scale problems by recovering matrices of rank about 10 with nearly a billion unknowns from just about 0.4% of their sampled entries. Our methods are connected with the recent literature on linearized Bregman iterations for $\ell_1$ minimization, and we develop a framework in which one can understand these algorithms in terms of well-known Lagrange multiplier algorithms.
0
Citation5,476
0
Save
0

Split Bregman Methods and Frame Based Image Restoration

Jian‐Feng Cai et al.Dec 9, 2009
Split Bregman methods introduced in [T. Goldstein and S. Osher, SIAM J. Imaging Sci., 2 (2009), pp. 323–343] have been demonstrated to be efficient tools for solving total variation norm minimization problems, which arise from partial differential equation based image restoration such as image denoising and magnetic resonance imaging reconstruction from sparse samples. In this paper, we prove the convergence of the split Bregman iterations, where the number of inner iterations is fixed to be one. Furthermore, we show that these split Bregman iterations can be used to solve minimization problems arising from the analysis based approach for image restoration in the literature. We apply these split Bregman iterations to the analysis based image restoration approach whose analysis operator is derived from tight framelets constructed in [A. Ron and Z. Shen, J. Funct. Anal., 148 (1997), pp. 408–447]. This gives a set of new frame based image restoration algorithms that cover several topics in image restorations, such as image denoising, deblurring, inpainting, and cartoon-texture image decomposition. Several numerical simulation results are provided.
0

Image restoration: Total variation, wavelet frames, and beyond

Jian‐Feng Cai et al.May 17, 2012
The variational techniques (e.g. the total variation based method) are well established and effective for image restoration, as well as many other applications, while the wavelet frame based approach is relatively new and came from a different school. This paper is designed to establish a connection between these two major approaches for image restoration. The main result of this paper shows that when spline wavelet frames of are used, a special model of a wavelet frame method, called the analysis based approach, can be viewed as a discrete approximation at a given resolution to variational methods. A convergence analysis as image resolution increases is given in terms of objective functionals and their approximate minimizers. This analysis goes beyond the establishment of the connections between these two approaches, since it leads to new understandings for both approaches. First, it provides geometric interpretations to the wavelet frame based approach as well as its solutions. On the other hand, for any given variational model, wavelet frame based approaches provide various and flexible discretizations which immediately lead to fast numerical algorithms for both wavelet frame based approaches and the corresponding variational model. Furthermore, the built-in multiresolution structure of wavelet frames can be utilized to adaptively choose proper differential operators in different regions of a given image according to the order of the singularity of the underlying solutions. This is important when multiple orders of differential operators are used in various models that generalize the total variation based method. These observations will enable us to design new methods according to the problems at hand, hence, lead to wider applications of both the variational and wavelet frame based approaches. Links of wavelet frame based approaches to some more general variational methods developed recently will also be discussed.
0

Blind motion deblurring from a single image using sparse approximation

Jian‐Feng Cai et al.Jun 1, 2009
Restoring a clear image from a single motion-blurred image due to camera shake has long been a challenging problem in digital imaging. Existing blind deblurring techniques either only remove simple motion blurring, or need user interactions to work on more complex cases. In this paper, we present an approach to remove motion blurring from a single image by formulating the blind blurring as a new joint optimization problem, which simultaneously maximizes the sparsity of the blur kernel and the sparsity of the clear image under certain suitable redundant tight frame systems (curvelet system for kernels and framelet system for images). Without requiring any prior information of the blur kernel as the input, our proposed approach is able to recover high-quality images from given blurred images. Furthermore, the new sparsity constraints under tight frame systems enable the application of a fast algorithm called linearized Bregman iteration to efficiently solve the proposed minimization problem. The experiments on both simulated images and real images showed that our algorithm can effectively removing complex motion blurring from nature images.
0

Data-driven tight frame construction and image denoising

Jian‐Feng Cai et al.Oct 14, 2013
Sparsity-based regularization methods for image restoration assume that the underlying image has a good sparse approximation under a certain system. Such a system can be a basis, a frame, or a general over-complete dictionary. One widely used class of such systems in image restoration are wavelet tight frames. There have been enduring efforts on seeking wavelet tight frames under which a certain class of functions or images can have a good sparse approximation. However, the structure of images varies greatly in practice and a system working well for one type of images may not work for another. This paper presents a method that derives a discrete tight frame system from the input image itself to provide a better sparse approximation to the input image. Such an adaptive tight frame construction scheme is applied to image denoising by constructing a tight frame tailored to the given noisy data. The experiments showed that the proposed approach performs better in image denoising than those wavelet tight frames designed for a class of images. Moreover, by ensuring that the system derived from our approach is always a tight frame, our approach also runs much faster than other over-complete dictionary based approaches with comparable performance on denoising.
0

Fast Multiclass Dictionaries Learning With Geometrical Directions in MRI Reconstruction

Zhifang Zhan et al.Nov 25, 2015
Objective: Improve the reconstructed image with fast and multiclass dictionaries learning when magnetic resonance imaging is accelerated by undersampling the k-space data. Methods: A fast orthogonal dictionary learning method is introduced into magnetic resonance image reconstruction to provide adaptive sparse representation of images. To enhance the sparsity, image is divided into classified patches according to the same geometrical direction and dictionary is trained within each class. A new sparse reconstruction model with the multiclass dictionaries is proposed and solved using a fast alternating direction method of multipliers.  Results: Experiments on phantom and brain imaging data with acceleration factor up to 10 and various undersampling patterns are conducted. The proposed method is compared with state-of-the-art magnetic resonance image reconstruction methods. Conclusion: Artifacts are better suppressed and image edges are better preserved than the compared methods. Besides, the computation of the proposed approach is much faster than the typical K-SVD dictionary learning method in magnetic resonance image reconstruction. Significance: The proposed method can be exploited in undersampled magnetic resonance imaging to reduce data acquisition time and reconstruct images with better image quality.
0

Quantum State Tomography via Nonconvex Riemannian Gradient Descent

Ming-Chien Hsu et al.Jun 13, 2024
The recovery of an unknown density matrix of large size requires huge computational resources. State-of-the-art performance has recently been achieved with the factored gradient descent (FGD) algorithm and its variants since they are able to mitigate the dimensionality barrier by utilizing some of the underlying structures of the density matrix. Despite the theoretical guarantee of a linear convergence rate, convergence in practical scenarios is still slow because the contracting factor of the FGD algorithms depends on the condition number $\ensuremath{\kappa}$ of the ground truth state. Consequently, the total number of iterations needed to achieve the estimation error $ϵ$ can be as large as $O(\sqrt{\ensuremath{\kappa}}\mathrm{ln}(1/ϵ))$. In this Letter, we derive a quantum state tomography scheme that improves the dependence on $\ensuremath{\kappa}$ to the logarithmic scale. Thus, our algorithm can achieve the approximation error $ϵ$ in $O(\mathrm{ln}(1/\ensuremath{\kappa}ϵ))$ steps. The improvement comes from the application of nonconvex Riemannian gradient descent (RGD). The contracting factor in our approach is thus a universal constant that is independent of the given state. Our theoretical results of extremely fast convergence and nearly optimal error bounds are corroborated by the numerical results.
Load More