KW
Kezhi Wang
Author with expertise in Intelligent Reflecting Surfaces in Wireless Communications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(70% Open Access)
Cited by:
4,538
h-index:
49
/
i10-index:
123
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multicell MIMO Communications Relying on Intelligent Reflecting Surfaces

Cunhua Pan et al.May 8, 2020
Intelligent reflecting surfaces (IRSs) constitute a disruptive wireless communication technique capable of creating a controllable propagation environment. In this paper, we propose to invoke an IRS at the cell boundary of multiple cells to assist the downlink transmission to cell-edge users, whilst mitigating the inter-cell interference, which is a crucial issue in multicell communication systems. We aim for maximizing the weighted sum rate (WSR) of all users through jointly optimizing the active precoding matrices at the base stations (BSs) and the phase shifts at the IRS subject to each BS's power constraint and unit modulus constraint. Both the BSs and the users are equipped with multiple antennas, which enhances the spectral efficiency by exploiting the spatial multiplexing gain. Due to the non-convexity of the problem, we first reformulate it into an equivalent one, which is solved by using the block coordinate descent (BCD) algorithm, where the precoding matrices and phase shifts are alternately optimized. The optimal precoding matrices can be obtained in closed form, when fixing the phase shifts. A pair of efficient algorithms are proposed for solving the phase shift optimization problem, namely the Majorization-Minimization (MM) Algorithm and the Complex Circle Manifold (CCM) Method. Both algorithms are guaranteed to converge to at least locally optimal solutions. We also extend the proposed algorithms to the more general multiple-IRS and network MIMO scenarios. Finally, our simulation results confirm the advantages of introducing IRSs in enhancing the cell-edge user performance.
0

Intelligent Reflecting Surface Aided MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer

Cunhua Pan et al.Jun 8, 2020
An intelligent reflecting surface (IRS) is invoked for enhancing the energy harvesting performance of a simultaneous wireless information and power transfer (SWIPT) aided system. Specifically, an IRS-assisted SWIPT system is considered, where a multi-antenna aided base station (BS) communicates with several multi-antenna assisted information receivers (IRs), while guaranteeing the energy harvesting requirement of the energy receivers (ERs). To maximize the weighted sum rate (WSR) of IRs, the transmit precoding (TPC) matrices of the BS and passive phase shift matrix of the IRS should be jointly optimized. To tackle this challenging optimization problem, we first adopt the classic block coordinate descent (BCD) algorithm for decoupling the original optimization problem into several subproblems and alternately optimize the TPC matrices and the phase shift matrix. For each subproblem, we provide a low-complexity iterative algorithm, which is guaranteed to converge to the Karush-Kuhn-Tucker (KKT) point of each subproblem. The BCD algorithm is rigorously proved to converge to the KKT point of the original problem. We also conceive a feasibility checking method to study its feasibility. Our extensive simulation results confirm that employing IRSs in SWIPT beneficially enhances the system performance and the proposed BCD algorithm converges rapidly, which is appealing for practical applications.
0

A Framework of Robust Transmission Design for IRS-Aided MISO Communications With Imperfect Cascaded Channels

Gui Zhou et al.Jan 1, 2020
Intelligent reflection surface (IRS) has recently been recognized as a promising technique to enhance the performance of wireless systems due to its ability of reconfiguring the signal propagation environment. However, the perfect channel state information (CSI) is challenging to obtain at the base station (BS) due to the lack of radio frequency (RF) chains at the IRS. Since most of the existing channel estimation methods were developed to acquire the cascaded BS-IRS-user channels, this paper is the first work to study the robust beamforming based on the imperfect cascaded BS-IRS-user channels at the transmitter (CBIUT). Specifically, the transmit power minimization problems are formulated subject to the worst-case rate constraints under the bounded CSI error model and the rate outage probability constraints under the statistical CSI error model, respectively. After approximating the worst-case rate constraints by using the S-procedure and the rate outage probability constraints by using the Bernstein-type inequality, the reformulated problems can be efficiently solved. Numerical results show that the negative impact of the CBIUT error on the system performance is greater than that of the direct CSI error.
0

Intelligent Reflecting Surface Aided Multigroup Multicast MISO Communication Systems

Gui Zhou et al.Jan 1, 2020
Intelligent reflecting surface (IRS) has recently been envisioned to offer unprecedented massive multiple-input multiple-output (MIMO)-like gains by deploying large-scale and low-cost passive reflection elements. By adjusting the reflection coefficients, the IRS can change the phase shifts on the impinging electromagnetic waves so that it can smartly reconfigure the signal propagation environment and enhance the power of the desired received signal or suppress the interference signal. In this paper, we consider downlink multigroup multicast communication systems assisted by an IRS. We aim for maximizing the sum rate of all the multicasting groups by the joint optimization of the precoding matrix at the base station (BS) and the reflection coefficients at the IRS under both the power and unit-modulus constraint. To tackle this non-convex problem, we propose two efficient algorithms under the majorization--minimization (MM) algorithm framework. Specifically, a concave lower bound surrogate objective function of each user's rate has been derived firstly, based on which two sets of variables can be updated alternately by solving two corresponding second-order cone programming (SOCP) problems. Then, in order to reduce the computational complexity, we derive another concave lower bound function of each group's rate for each set of variables at every iteration, and obtain the closed-form solutions under these loose surrogate objective functions. Finally, the simulation results demonstrate the benefits in terms of the spectral and energy efficiency of the introduced IRS and the effectiveness in terms of the convergence and complexity of our proposed algorithms.
0

Artificial-Noise-Aided Secure MIMO Wireless Communications via Intelligent Reflecting Surface

Sheng Hong et al.Sep 21, 2020
This article considers an artificial noise (AN)-aided secure MIMO wireless communication system. To enhance the system security performance, the advanced intelligent reflecting surface (IRS) is invoked, and the base station (BS), legitimate information receiver (IR) and eavesdropper (Eve) are equipped with multiple antennas. With the aim for maximizing the secrecy rate (SR), the transmit precoding (TPC) matrix at the BS, covariance matrix of AN and phase shifts at the IRS are jointly optimized subject to constrains of transmit power limit and unit modulus of IRS phase shifts. Then, the secrecy rate maximization (SRM) problem is formulated, which is a non-convex problem with multiple coupled variables. To tackle it, we propose to utilize the block coordinate descent (BCD) algorithm to alternately update the variables while keeping SR non-decreasing. Specifically, the optimal TPC matrix and AN covariance matrix are derived by Lagrangian multiplier method, and the optimal phase shifts are obtained by Majorization-Minimization (MM) algorithm. Since all variables can be calculated in closed form, the proposed algorithm is very efficient. We also extend the SRM problem to the more general multiple-IRs scenario and propose a BCD algorithm to solve it. Simulation results validate the effectiveness of system security enhancement via an IRS.
0

Joint Deployment and Task Scheduling Optimization for Large-Scale Mobile Users in Multi-UAV-Enabled Mobile Edge Computing

Yong Wang et al.Sep 11, 2019
This article establishes a new multiunmanned aerial vehicle (multi-UAV)-enabled mobile edge computing (MEC) system, where a number of unmanned aerial vehicles (UAVs) are deployed as flying edge clouds for large-scale mobile users. In this system, we need to optimize the deployment of UAVs, by considering their number and locations. At the same time, to provide good services for all mobile users, it is necessary to optimize task scheduling. Specifically, for each mobile user, we need to determine whether its task is executed locally or on a UAV (i.e., offloading decision), and how many resources should be allocated (i.e., resource allocation). This article presents a two-layer optimization method for jointly optimizing the deployment of UAVs and task scheduling, with the aim of minimizing system energy consumption. By analyzing this system, we obtain the following property: the number of UAVs should be as small as possible under the condition that all tasks can be completed. Based on this property, in the upper layer, we propose a differential evolution algorithm with an elimination operator to optimize the deployment of UAVs, in which each individual represents a UAV's location and the entire population represents an entire deployment of UAVs. During the evolution, we first determine the maximum number of UAVs. Subsequently, the elimination operator gradually reduces the number of UAVs until at least one task cannot be executed under delay constraints. This process achieves an adaptive adjustment of the number of UAVs. In the lower layer, based on the given deployment of UAVs, we transform the task scheduling into a 0-1 integer programming problem. Due to the large-scale characteristic of this 0-1 integer programming problem, we propose an efficient greedy algorithm to obtain the near-optimal solution with much less time. The effectiveness of the proposed two-layer optimization method and the established multi-UAV-enabled MEC system is demonstrated on ten instances with up to 1000 mobile users.
Load More