PG
Peng Gu
Author with expertise in Demand Response in Smart Grids
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
3
h-index:
7
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Optimal operation of energy-intensive load considering electricity carbon market

Bowen Zhou et al.Jul 21, 2024
Energy-intensive load benefits from low electricity tariff and carbon emission, since they occupy certain amounts in the total cost of the product. This paper considers energy-intensive load participation in the electricity as well as carbon trading to reduce the cost. Firstly, an electricity-carbon model is established based on the correlation value method to calculate the carbon emissions of energy-intensive load based on their electricity consumption to realize the carbon amount. Afterwards, the baseline method is used to allocate free carbon emission quotas to energy-intensive load and a reward-penalty carbon trading price mechanism considering offset is proposed. Next, the objective function to achieve maximum benefits, and to reduce output fluctuation, and to improve new energy accommodation is proposed. The case studies show that, by comparing multi-objective function optimization, the optimization target proposed in this paper can effectively reduce wind power output fluctuations and improve wind power accommodation. Through the total participation in carbon trading and electricity market income, multi-objective optimization can increase the system income while ensuring that energy-intensive load meets production requirements under the premise of reducing carbon emissions, verifying the effectiveness of the low-carbon optimal operation model proposed in this paper.
0

Analysis and Design of a Recyclable Inductive Power Transfer System for Sustainable Multi-Stage Rocket Microgrid with Multi-Constant Voltage Output Characteristics—Theoretical Considerations

Peng Gu et al.Nov 5, 2024
After a traditional one-time rocket is launched, most of its parts will fall into the atmosphere and burn or fall into the ocean. The parts cannot be recycled, so the cost is relatively high. Multi-stage rockets can be recovered after launch, which greatly reduces the cost of space launches. Moreover, recycling rockets can reduce the generation of waste and reduce pollution and damage to the environment. With the reduction in rocket launch costs and technological advances, space exploration and development can be carried out more frequently and economically. It provides technical support for the sustainable use of space resources. It not only promotes the sustainable development of the aerospace field but also has a positive impact on global environmental protection, resource utilization, and economic development. In order to adapt to the stage-by-stage separation structure of the rocket, this paper proposes a new multi-stage rocket inductive power transfer (IPT) system to power the rocket microgrid. The planar coil structure is used to form wireless power transfer between each stage of the rocket, reducing the volume of the magnetic coupling structure. The volume of the circuit topology structure is reduced by introducing an auxiliary coil. An equivalent three-stage S/T topology is proposed, and the constant voltage output characteristics of multiple loads are analyzed. A multi-stage coil structure is proposed to supply power to multiple loads simultaneously. In order to eliminate undesired magnetic coupling between coils, ferrite cores are added between coils for effective electromagnetic shielding. The parameters of the magnetic coupling structure are optimized based on the finite element method (FEM). A prototype of the proposed IPT system is built to simulate a multi-stage rocket. A series of experiments are conducted to verify the advantages of the proposed IPT system, and the three-stage rocket system efficiency reached 88.5%. This project is theoretical. Its verification was performed only in the laboratory conditions.