LQ
Lianyong Qi
Author with expertise in Internet of Things and Edge Computing
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
19
(11% Open Access)
Cited by:
2,145
h-index:
56
/
i10-index:
126
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Complementing IoT Services Through Software Defined Networking and Edge Computing: A Comprehensive Survey

Wajid Rafique et al.Jan 1, 2020
Millions of sensors continuously produce and transmit data to control real-world infrastructures using complex networks in the Internet of Things (IoT). However, IoT devices are limited in computational power, including storage, processing, and communication resources, to effectively perform compute-intensive tasks locally. Edge computing resolves the resource limitation problems by bringing computation closer to the edge of IoT devices. Providing distributed edge nodes across the network reduces the stress of centralized computation and overcomes latency challenges in the IoT. Therefore, edge computing presents low-cost solutions for compute-intensive tasks. Software-Defined Networking (SDN) enables effective network management by presenting a global perspective of the network. While SDN was not explicitly developed for IoT challenges, it can, however, provide impetus to solve the complexity issues and help in efficient IoT service orchestration. The current IoT paradigm of massive data generation, complex infrastructures, security vulnerabilities, and requirements from the newly developed technologies make IoT realization a challenging issue. In this research, we provide an extensive survey on SDN and the edge computing ecosystem to solve the challenge of complex IoT management. We present the latest research on Software-Defined Internet of Things orchestration using Edge (SDIoT-Edge) and highlight key requirements and standardization efforts in integrating these diverse architectures. An extensive discussion on different case studies using SDIoT-Edge computing is presented to envision the underlying concept. Furthermore, we classify state-of-the-art research in the SDIoT-Edge ecosystem based on multiple performance parameters. We comprehensively present security and privacy vulnerabilities in the SDIoT-Edge computing and provide detailed taxonomies of multiple attack possibilities in this paradigm. We highlight the lessons learned based on our findings at the end of each section. Finally, we discuss critical insights toward current research issues, challenges, and further research directions to efficiently provide IoT services in the SDIoT-Edge paradigm.
0

Privacy-Aware Data Fusion and Prediction With Spatial-Temporal Context for Smart City Industrial Environment

Lianyong Qi et al.Jul 28, 2020
As one of the cyber–physical–social systems that plays a key role in people's daily activities, a smart city is producing a considerable amount of industrial data associated with transportation, healthcare, business, social activities, and so on. Effectively and efficiently fusing and mining such data from multiple sources can contribute much to the development and improvements of various smart city applications. However, the industrial data collected from the smart city are often sensitive and contain partial user privacy such as spatial–temporal context information. Therefore, it is becoming a necessity to secure user privacy hidden in the smart city data before these data are integrated together for further mining, analyses, and prediction. However, due to the inherent tradeoff between data privacy and data availability, it is often a challenging task to protect users' context privacy while guaranteeing accurate data analysis and prediction results after data fusion. Considering this challenge, a novel privacy-aware data fusion and prediction approach for the smart city industrial environment is put forward in this article, which is based on the classic locality-sensitive hashing technique. At last, our proposal is evaluated by a set of experiments based on a real-world dataset. Experimental results show better prediction performances of our approach compared to other competitive ones.
0

A Distributed Locality-Sensitive Hashing-Based Approach for Cloud Service Recommendation From Multi-Source Data

Lianyong Qi et al.Oct 6, 2017
To maximize the economic benefits, a cloud service provider needs to recommend its services to as many users as possible based on the historical user-service quality data. However, when a cloud platform (e.g., Amazon) intends to make a service recommendation decision, considering only its own user-service quality data is insufficient, because a cloud user may invoke services from multiple distributed cloud platforms (e.g., Amazon and IBM). In this situation, it is promising for Amazon to collaborate with other cloud platforms (e.g., IBM) to utilize the integrated data for the service recommendation to improve the recommendation accuracy. However, two challenges are present in the above-mentioned collaboration process, where we attempt to use multi-source data for the service recommendation. First, protecting users' privacy is challenging when IBM releases its own data to Amazon. Second, the recommendation efficiency and scalability are often low when the user-service quality data of Amazon and IBM update frequently. Considering these challenges, a privacy-preserving and scalable service recommendation approach based on distributed locality-sensitive hashing, i.e., SerRec distri-LSH , is proposed in this paper to handle the service recommendation in a distributed cloud environment. Extensive experiments on the WS-DREAM data set validate the feasibility of our approach in terms of service recommendation accuracy, scalability, and privacy preservation.
0

Counterfactual User Sequence Synthesis Augmented with Continuous Time Dynamic Preference Modeling for Sequential POI Recommendation

Lianyong Qi et al.Jul 26, 2024
With the proliferation of Location-based Social Networks (LBSNs), user check-in data at Points-of-Interest (POIs) has surged, offering rich insights into user preferences. However, sequential POI recommendation systems always face two pivotal challenges. A challenge lies in the difficulty of modeling time in a discrete space, which fails to accurately capture the dynamic nature of user preferences. Another challenge is the inherent sparsity and noise in continuous POI recommendation, which hinder the recommendation process. To address these challenges, we propose counterfactual user sequence synthesis with continuous time dynamic preference modeling (CussCtpm). CussCtpm innovatively combines Gated Recurrent Unit (GRU) with neural Ordinary Differential Equations (ODEs) to model user preferences in a continuous time framework. CussCtpm captures user preferences at both the POI-level and interest-level, identifying deterministic and non-deterministic preference concepts. Particularly at the interest-level, we employ GRU and neural ODEs to model users' dynamic preferences in continuous space, aiming to capture finer-grained shifts in user preferences over time. Furthermore, CussCtpm utilizes counterfactual data augmentation to generate counterfactual positive and negative user sequences. Our extensive experiments on two widely-used public datasets demonstrate that CussCtpm outperforms several advanced baseline models.
0
Citation1
0
Save
Load More