YY
Yong Yang
Author with expertise in Diagnosis and Management of Fungal Infections
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
6
(33% Open Access)
Cited by:
2
h-index:
18
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome-wide analysis of GATA factors in moso bamboo (Phyllostachys edulis) unveils that PeGATAs regulate shoot rapid-growth and rhizome development

Taotao Wang et al.Aug 22, 2019
Background: Moso bamboo is well-known for its rapid-growth shoots and widespread rhizomes. However, the regulatory genes of these two processes are largely unexplored. GATA factors regulate many developmental processes, but its role in plant height control and rhizome development remains unclear. Results: Here, we found that bamboo GATA factors (PeGATAs) are involved in the growth regulation of bamboo shoots and rhizomes. Bioinformatics and evolutionary analysis showed that there are 31 PeGATA factors in bamboo, which can be divided into three subfamilies. Light, hormone, and stress-related cis-elements were found in the promoter region of the PeGATA genes. Gene expression of 12 PeGATA genes was regulated by phytohormone-GA but there was no correlation between auxin and PeGATA gene expression. More than 27 PeGATA genes were differentially expressed in different tissues of rhizomes, and almost all PeGATAs have dynamic gene expression level during the rapid-growth of bamboo shoots. These results indicate that PeGATAs regulate rhizome development and bamboo shoot growth partially via GA signaling pathway. In addition, PeGATA26, a rapid-growth negative regulatory candidate gene modulated by GA treatment, was overexpressed in Arabidopsis, and over-expression of PeGATA26 significantly repressed Arabidopsis primary root length and plant height. The PeGATA26 overexpressing lines were also resistant to exogenous GA treatment, further emphasizing that PeGATA26 inhibits plant height from Arabidopsis to moso bamboo via GA signaling pathway. Conclusions: Our results provide an insight into the function of GATA transcription factors in regulating shoot rapid-growth and rhizome development, and provide genetic resources for engineering plant height.
0

Transcriptomic analysis reveals the mechanism of isorhamnetin in the treatment of Diabetes Mellitus Erectile Dysfunction

Zhuo Wang et al.Sep 1, 2024
Exploring the therapeutic effect and mechanism of isorhamnetin in the treatment of DMED. Using a high glucose environment to induce endothelial cells damage in the corpus cavernosum, and combining with intervention agents such as ferroptosis inhibitors to observe the process of cell damage and repair, evaluating cell status through CCK-8 and DAPI; To establish the STZ-induced diabetes rat model and detect the erectile function and tissue changes; Perform transcriptome sequencing on rat models and samples treated with isorhamnetin to analyze differentially expressed genes and their GO functions; Identify critical pathways by combining with the ferroptosis database; Flow cytometry was used to detect ROS and mitochondrial membrane potential, and RT-PCR was used to verify gene expression, Seahorse detects mitochondrial oxygen consumption rate, revealing the mechanism of action of isorhamnetin. Ferroptosis inhibitors and isorhamnetin can effectively reverse the damage of corpus cavernosum endothelial cells induced by high glucose and ferroptosis agonists. Isorhamnetin has the ability to reinstate the erectile function of diabetic rats, while enhancing the quantity of endothelial cells and refining the morphology of collagen fibers. Immunohistochemistry revealed that ferroptosis existed in the penis tissue of diabetes rats. Transcriptomic analysis showed that isorhamnetin improves gene expression in DM rats by regulating genes such as GFER, IGHM, GPX4 and HMOX1, involving multiple pathways and biological processes. Flow cytometry and RT-PCR confirmed that isorhamnetin can reduce reactive oxygen species levels, restore essential gene expression, improve mitochondrial membrane potential, and alleviate oxidative stress and ferroptosis. Seahorse detection found that isorhamnetin can restore mitochondrial oxygen consumption rate Isorhamnetin attenuates high glucose damage to cavernous endothelial cells by inhibiting ferroptosis and oxidative stress, restores erectile function and improves tissue morphology in diabetic rats, and its multi-pathway and multi-targeting regulatory mechanism suggests that it is promising to be an effective drug for the treatment of DMED.
0

Novel poly(lactic-co-glycolic acid) nanoliposome-encapsulated diclofenac sodium and celecoxib enable long-lasting synergistic treatment of osteoarthritis

Bo Chu et al.May 31, 2024
Background: Diclofenac sodium (DS) and celecoxib (CEL) are primary anti-inflammatory agents used in the treatment of osteoarthritis (OA). Formulating these drugs into extended-release versions can effectively address the issue of multiple daily doses. In this study, we designed and synthesized a novel poly(lactic-co-glycolic acid) (PLGA) nanoliposome as a dual-drug delivery sustained-release formulation (PPLs-DS-CEL) to achieve long-lasting synergistic treatment of OA with both DS and CEL. Methods: PPLs-DS-CEL was synthesized by the reverse evaporation method and evaluated for its physicochemical properties, encapsulation efficiency, drug release kinetics and biological properties. A rat OA model was established to assess the therapeutic efficacy and biosafety of PPLs-DS-CEL. Results: The particle size of PPLs-DS-CEL was 218.36 ± 6.27 nm, with a potential of 32.56 ± 3.28 mv, indicating a homogeneous vesicle size. The encapsulation of DS and CEL by PPLs-DS-CEL was 95.18 ± 4.43% and 93.63 ± 5.11%, with drug loading of 9.56 ± 0.32% and 9.68 ± 0.34%, respectively. PPLs-DS-CEL exhibited low cytotoxicity and hemolysis, and was able to achieve long-lasting synergistic analgesic and anti-inflammatory therapeutic effects in OA through slow release of DS and CEL, demonstrating good biosafety properties. Conclusion: This study developed a novel sustained-release nanoliposomes formulation capable of co-loading two drugs for the long-acting synergistic treatment of OA. It offers a new and effective therapeutic strategy for OA treatment in the clinic settings and presents a promising approach for drug delivery systems.