DG
Deepak Gupta
Author with expertise in Applications of Deep Learning in Medical Imaging
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
30
(37% Open Access)
Cited by:
3,771
h-index:
56
/
i10-index:
241
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved Covid-19 Detection

Abdul Waheed et al.Jan 1, 2020
Coronavirus (COVID-19) is a viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spread of COVID-19 seems to have a detrimental effect on the global economy and health. A positive chest X-ray of infected patients is a crucial step in the battle against COVID-19. Early results suggest that abnormalities exist in chest X-rays of patients suggestive of COVID-19. This has led to the introduction of a variety of deep learning systems and studies have shown that the accuracy of COVID-19 patient detection through the use of chest X-rays is strongly optimistic. Deep learning networks like convolutional neural networks (CNNs) need a substantial amount of training data. Because the outbreak is recent, it is difficult to gather a significant number of radiographic images in such a short time. Therefore, in this research, we present a method to generate synthetic chest X-ray (CXR) images by developing an Auxiliary Classifier Generative Adversarial Network (ACGAN) based model called CovidGAN. In addition, we demonstrate that the synthetic images produced from CovidGAN can be utilized to enhance the performance of CNN for COVID-19 detection. Classification using CNN alone yielded 85% accuracy. By adding synthetic images produced by CovidGAN, the accuracy increased to 95%. We hope this method will speed up COVID-19 detection and lead to more robust systems of radiology.
0

Sound Classification Using Convolutional Neural Network and Tensor Deep Stacking Network

Aditya Khamparia et al.Jan 1, 2019
In every aspect of human life, sound plays an important role. From personal security to critical surveillance, sound is a key element to develop the automated systems for these fields. Few systems are already in the market, but their efficiency is a point of concern for their implementation in real-life scenarios. The learning capabilities of the deep learning architectures can be used to develop the sound classification systems to overcome efficiency issues of the traditional systems. Our aim, in this paper, is to use the deep learning networks for classifying the environmental sounds based on the generated spectrograms of these sounds. We used the spectrogram images of environmental sounds to train the convolutional neural network (CNN) and the tensor deep stacking network (TDSN). We used two datasets for our experiment: ESC-10 and ESC-50. Both systems were trained on these datasets, and the achieved accuracy was 77% and 49% in CNN and 56% in TDSN trained on the ESC-10. From this experiment, it is concluded that the proposed approach for sound classification using the spectrogram images of sounds can be efficiently used to develop the sound classification and recognition systems.
0

Optimal Feature Selection-Based Medical Image Classification Using Deep Learning Model in Internet of Medical Things

R. Raj et al.Jan 1, 2020
Internet of Medical Things (IoMT) is the collection of medical devices and related applications which link the healthcare IT systems through online computer networks. In the field of diagnosis, medical image classification plays an important role in prediction and early diagnosis of critical diseases. Medical images form an indispensable part of a patient's health record which can be applied to control, handle and treat the diseases. But, classification of images is a challenging task in computer-based diagnostics. In this research article, we have introduced a improved classifier i.e., Optimal Deep Learning (DL) for classification of lung cancer, brain image, and Alzheimer's disease. The researchers proposed the Optimal Feature Selection based Medical Image Classification using DL model by incorporating preprocessing, feature selection and classification. The main goal of the paper is to derive an optimal feature selection model for effective medical image classification. To enhance the performance of the DL classifier, Opposition-based Crow Search (OCS) algorithm is proposed. The OCS algorithm picks the optimal features from pre-processed images, here Multi-texture, grey level features were selected for the analysis. Finally, the optimal features improved the classification result and increased the accuracy, specificity and sensitivity in the diagnosis of medical images. The proposed results were implemented in MATLAB and compared with existing feature selection models and other classification approaches. The proposed model achieved the maximum performance in terms of accuracy, sensitivity and specificity being 95.22%, 86.45 % and 100% for the applied set of images.
Load More