This paper focuses on applying the Corcione model to the microchannel. The Corcione model is highly relevant because it provides accurate empirical relationships for forecasting the dynamic viscosity and effective thermal conductivity of nanofluids. These qualities are crucial for building and improving different thermal systems. The model presents and discusses two simple empirical correlating equations for forecasting the dynamic viscosity and effective thermal conductivity of nanofluids. Hence the aim of this work is to use Corcione’s model to demonstrate the fully developed laminar flow of an electrically conducting nanoliquid through an inclined microchannel. The energy equation takes into account the physical impacts of the heat source/sink, temperature jamp, and viscous dissipation. TiO 2 nanoparticles in water are taken into consideration in this work for enhanced cooling. Using the numerical program Maple, Runge–Kutta–Fehlberg 4th–5th-order method is utilized to solve the present research. Making use of graphs, all of the flow parameters are shown, and the physical consequences on the flow and temperature profiles are thoroughly examined. It is noted that a higher inclined angle enhances the velocity profile whereas a larger temperature jump declines the temperature profile. Furthermore, Corcione’s model often has greater velocities, temperatures, and reduced surface drag forces than the Tiwari–Das model.