YW
Yinghui Wang
Author with expertise in Nanotechnology and Imaging for Cancer Therapy and Diagnosis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(18% Open Access)
Cited by:
4,237
h-index:
46
/
i10-index:
113
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks

Wangdong Zeng et al.Jan 22, 2010
In view of the limited ruthenium resource, metal-free organic dyes may play a prominent role in the coming large-scale application of cost-effective dye-sensitized solar cells, if their efficiency and stability can be considerably improved. In this paper we utilized a binary π-conjugated spacer of ethylenedioxythiophene and dithienosilole to construct a high molar absorption coefficient push−pull dye, characteristic of an intramolecular charge-transfer band peaking at 584 nm measured in chloroform. In comparison with the standard ruthenium sensitizer Z907, this metal-free chromophore C219 endowed a nanocrystalline titania film with an evident light-harvesting enhancement, leading to an unprecedented 10.0−10.3% efficiency at the AM1.5G conditions for dye-sensitized solar cells with nonruthenium dyestuffs, although a highly volatile electrolyte was used. Transient absorption measurements have revealed that even if the kinetics of back-electron transfer and dye regeneration are considerably different for Z907 and C219, the branching ratios of these two charge-transfer channels are over 35 for both dyes, ensuring a high yield of net charge separation at the titania/dye/electrolyte interface. A solvent-free ionic liquid cell with C219 as the sensitizer exhibited an impressive efficiency of 8.9% under a low light intensity of 14.39 mW cm−2, making it very favorable for the indoor application of flexible dye-sensitized solar cells.
0

All-in-One Theranostic Nanoagent with Enhanced Reactive Oxygen Species Generation and Modulating Tumor Microenvironment Ability for Effective Tumor Eradication

Jing Wang et al.May 4, 2018
Despite regulation of the reactive oxygen species (ROS) level is an intelligent strategy for cancer therapy, the therapeutic effects of ROS-mediated therapy (including photodynamic therapy (PDT) and chemodynamic therapy (CDT)) are limited by oxygen reliance, inherent flaws of traditional photosensitizers, and strict reaction conditions of effective Fenton reaction. Herein, we reported biocompatible copper ferrite nanospheres (CFNs) with enhanced ROS production under irradiation with a 650 nm laser through direct electron transfer and photoenhanced Fenton reaction and high photothermal conversion efficiency upon exposure to an 808 nm laser, exhibiting a considerable improved synergistic treatment effect. Importantly, by exploiting the properties of O2 generation and glutathione (GSH) depletion of CFNs, CFNs relieve the hypoxia and antioxidant capability of the tumor, achieving photoenhanced CDT and improved PDT. The high relaxivity of 468.06 mM–1 s–1 enables CFNs to act as an outstanding contrast agent for MRI in vitro and in vivo. These findings certify the potential of such "all in one" nanotheranostic agent integrated PDT, photoenhanced CDT, photothermal therapy (PTT), and MRI imaging capabilities along with modulating the tumor microenvironment function in theranostics of cancer.
0

Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy

Yinghui Wang et al.Jul 13, 2013
Theranostics, the integration of diagnostics and therapies, has become a new concept in the battles with various major diseases such as cancer. Here, we report a multifunctional nanoplatform, which is developed by covalently grafting core–shell structured upconversion nanoparticles (UCNPs) with nanographene oxide (NGO) via bifunctional polyethylene glycol (PEG), and then loading phthalocyanine (ZnPc) on the surface of NGO. The obtained UCNPs-NGO/ZnPc nanocomposites are not only be used as upconversion luminescence (UCL) imaging probes of cells and whole-body animals with high contrast for diagnosis, but also can generate cytotoxic singlet oxygen under light excitation for photodynamic therapy (PDT), as well as rapidly and efficiently convert the 808 nm laser energy into thermal energy for photothermal therapy (PTT). A remarkably improved and synergistic therapeutic effect compared to PTT or PDT alone is obtained, providing high therapeutic efficiency for cancer treatment. Therefore, benefiting from the unique multifunctional hybrid nanostructure, UCNPs-NGO/ZnPc nanocomposites developed herein are promising as an integrated theranostic probe for potential UCL image-guided combinatorial PDT/PTT of cancer.
0

Copper(I) Phosphide Nanocrystals for In Situ Self‐Generation Magnetic Resonance Imaging‐Guided Photothermal‐Enhanced Chemodynamic Synergetic Therapy Resisting Deep‐Seated Tumor

Yang Liu et al.Oct 7, 2019
Abstract Fe‐based Fenton agents can generate highly reactive and toxic hydroxyl radicals (·OH) in the tumor microenvironment (TME) for chemodynamic therapy (CDT) with high specificity. However, the strict condition (lower pH environment: 3–4) of the highly efficient Fenton reaction limits its practical application in the clinic. Development of new CDT agents more suitable for TME is significant and challenging. A highly efficient Cu(I)‐based CDT agent, copper(I) phosphide nanocrystals (CP NCs), which is more adaptable to the pH value of TME than Fe‐based agents, thereby producing more ·OH to trigger the apoptosis of cancer cells, is prepared. Moreover, the excess glutathione (GSH) in TME can reduce the Cu(II) produced by a Fenton‐like reaction to Cu(I), further increasing the generation rate of ·OH and relieving tumor antioxidant ability. Furthermore, owing to their strong absorption in the NIR II region, CP NCs exhibit an excellent photothermal conversion effect, which can further improve the Fenton reaction. What is more, CP NCs can act as in situ self‐generation magnetic resonance imaging (MRI) agents owing to the generation of paramagnetic Cu(II) in response to excess H 2 O 2 in the TME. These properties may open up the exploration of copper‐based materials in clinical application of self‐generation imaging‐guided synergetic treatment.
0

The B-RafV600E inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury

JX Li et al.Jun 5, 2014
Receptor-interacting protein (RIP)3 is a critical regulator of necroptosis and has been demonstrated to be associated with various diseases, suggesting that its inhibitors are promising in the clinic. However, there have been few RIP3 inhibitors reported as yet. B-Raf(V600E) inhibitors are an important anticancer drug class for metastatic melanoma therapy. In this study, we found that 6 B-Raf inhibitors could inhibit RIP3 enzymatic activity in vitro. Among them, dabrafenib showed the most potent inhibition on RIP3, which was achieved by its ATP-competitive binding to the enzyme. Dabrafenib displayed highly selective inhibition on RIP3 over RIP1, RIP2 and RIP5. Moreover, only dabrafenib rescued cells from RIP3-mediated necroptosis induced by the necroptosis-induced combinations, that is, tumor necrosis factor (TNF)α, TNF-related apoptosis-inducing ligand or Fas ligand plus Smac mimetic and the caspase inhibitor z-VAD. Dabrafenib decreased the RIP3-mediated Ser358 phosphorylation of mixed lineage kinase domain-like protein (MLKL) and disrupted the interaction between RIP3 and MLKL. Notably, RIP3 inhibition of dabrafenib appeared to be independent of its B-Raf inhibition. Dabrafenib was further revealed to prevent acetaminophen-induced necrosis in normal human hepatocytes, which is considered to be mediated by RIP3. In acetaminophen-overdosed mouse models, dabrafenib was found to apparently ease the acetaminophen-caused liver damage. The results indicate that the anticancer B-Raf(V600E) inhibitor dabrafenib is a RIP3 inhibitor, which could serve as a sharp tool for probing the RIP3 biology and as a potential preventive or therapeutic agent for RIP3-involved necroptosis-related diseases such as acetaminophen-induced liver damage.
0
Citation212
0
Save
Load More