UK
Ulrich Kentsch
Author with expertise in Infrared Detector Technologies
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
1
h-index:
14
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Extended Infrared Absorption in Nanostructured Si Through Se Implantation and Flash Lamp Annealing

Behrad Radfar et al.Jun 2, 2024
Nanostructured silicon can reduce reflectance loss in optoelectronic applications, but intrinsic silicon cannot absorb photons with energy below its 1.1 eV bandgap. However, incorporating a high concentration of dopants, i.e., hyperdoping, to nanostructured silicon is expected to bring broadband absorption ranging from UV to short‐wavelength IR (SWIR, <2500 nm). In this work, we prepare nanostructured silicon using cryogenic plasma etching, which is then hyperdoped with selenium (Se) through ion implantation. Besides sub‐bandgap absorption, ion implantation forms crystal damage, which can be recovered through flash lamp annealing. We study crystal damage and broadband (250–2500 nm) absorption from planar and nanostructured surfaces. We first show that nanostructures survive ion implantation hyperdoping and flash lamp annealing under optimized conditions. Secondly, we demonstrate that nanostructured silicon has a 15% higher sub‐bandgap absorption (1100–2500 nm) compared to its non‐hyperdoped nanostructure counterpart while maintaining 97% above‐bandgap absorption (250–1100 nm). Lastly, we simulate the sub‐bandgap absorption of hyperdoped Si nanostructures in a 2D model using the finite element method. Simulation results show that the sub‐bandgap absorption is mainly limited by the thickness of the hyperdoped layer rather than the height of nanostructures.
0

Si1−xyGeySnx alloy formation by Sn ion implantation and flash lamp annealing

Oliver Steuer et al.Aug 8, 2024
For many years, Si1−yGey alloys have been applied in the semiconductor industry due to the ability to adjust the performance of Si-based nanoelectronic devices. Following this alloying approach of group-IV semiconductors, adding tin (Sn) into the alloy appears as the obvious next step, which leads to additional possibilities for tailoring the material properties. Adding Sn enables effective bandgap and strain engineering and can improve the carrier mobilities, which makes Si1−x−yGeySnx alloys promising candidates for future opto- and nanoelectronics applications. The bottom-up approach for epitaxial growth of Si1−x−yGeySnx, e.g., by chemical vapor deposition and molecular beam epitaxy, allows tuning the material properties in the growth direction only; the realization of local material modifications to generate lateral heterostructures with such a bottom-up approach is extremely elaborate, since it would require the use of lithography, etching, and either selective epitaxy or epitaxy and chemical–mechanical polishing, giving rise to interface issues, non-planar substrates, etc. This article shows the possibility of fabricating Si1−x−yGeySnx alloys by Sn ion beam implantation into Si1−yGey layers followed by millisecond-range flash lamp annealing (FLA). The materials are investigated by Rutherford backscattering spectrometry, micro-Raman spectroscopy, x-ray diffraction, and transmission electron microscopy. The fabrication approach was adapted to ultra-thin Si1−yGey layers on silicon-on-insulator substrates. The results show the fabrication of single-crystalline Si1−x−yGeySnx with up to 2.3 at. % incorporated Sn without any indication of Sn segregation after recrystallization via FLA. Finally, we exhibit the possibility of implanting Sn locally in ultra-thin Si1−yGey films by masking unstructured regions on the chip, thus demonstrating the realization of vertical as well as lateral Si1−x−yGeySnx heterostructures by Sn ion implantation and flash lamp annealing.