LS
Lorenzo Sorace
Author with expertise in Molecular Magnetism and Spintronics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(56% Open Access)
Cited by:
2,113
h-index:
56
/
i10-index:
208
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits

Matteo Atzori et al.Feb 7, 2016
Here we report the investigation of the magnetic relaxation and the quantum coherence of vanadyl phthalocyanine, VOPc, a multifunctional and easy-processable potential molecular spin qubit. VOPc in its pure form (1) and its crystalline dispersions in the isostructural diamagnetic host TiOPc in different stoichiometric ratios, namely VOPc:TiOPc 1:10 (2) and 1:1000 (3), were investigated via a multitechnique approach based on the combination of alternate current (AC) susceptometry, continuous wave, and pulsed electron paramagnetic resonance (EPR) spectroscopy. AC susceptibility measurements revealed a linear increase of the relaxation rate with temperature up to 20 K, as expected for a direct mechanism, but τ remains slow over a very wide range of applied static field values (up to ∼5 T). Pulsed EPR spectroscopy experiments on 3 revealed quantum coherence up to room temperature with T(m) ∼1 μs at 300 K, representing the highest value obtained to date for molecular electronic spin qubits. Rabi oscillations are observed in this nuclear spin-active environment ((1)H and (14)N nuclei) at room temperature also for 2, indicating an outstanding robustness of the quantum coherence in this molecular semiconductor exploitable in spintronic devices.
0

Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety

Matteo Atzori et al.Aug 12, 2016
In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, Tm, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T1 caused by the efficient spin–phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin–lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 μs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand.
0
Paper
Citation212
0
Save
0

Quantifying Magnetic Anisotropy of Series of Five‐Coordinate CoII Ions: Experimental and Theoretical Insights

Vijaya Thangaraj et al.Jan 14, 2025
Stabilizing large easy-axis type magnetic anisotropy in molecular complexes is a challenging task, yet it is crucial for the development of information storage devices and applications in molecular spintronics. Achieving this requires a deep understanding of electronic structure and the relationships between structure and properties to develop magneto-structural correlations that are currently unexplored in the literature. Herein, a series of five-coordinate distorted square pyramidal CoII complexes [Co(L)(X2)].CHCl3 (where X = Cl (1), Br (2), or I (3)) is reported, all exhibiting easy-axis magnetic anicotropy. The size of the zero field splitting axial parameter (D) is quantitatively determined (1 = -72; 2 = -67 and 3 = -25 cm-1) using a cantilever torque magnetometry which is further firmly supported by magnetic susceptibility, and EPR measurements. The study of the magnetization relaxation dynamics reveals field-induced slow relaxation of magnetization due to the predominant Raman relaxation process. Theoretical calculations on 1-3 and optimized model complexes of 1 reveal insights into the electronic structure and highlight the impact of steric and electronic effects on modulating the D values. Overall, the studies reported pave the way for designing a new generation of CoII complexes with enhanced axiality and a lower rhombicity.