GW
Gang Wu
Author with expertise in Electrocatalysis for Energy Conversion
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
37
(59% Open Access)
Cited by:
17,516
h-index:
113
/
i10-index:
276
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

Hanguang Zhang et al.Sep 13, 2017
+9
M
S
H
It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6–1.0 V) in O2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.
2

Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells

Jiazhan Li et al.Oct 18, 2018
+16
D
M
J
Platinum group metal (PGM)-free catalysts that are also iron free are highly desirable for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells, as they avoid possible Fenton reactions. Here we report an efficient ORR catalyst that consists of atomically dispersed nitrogen-coordinated single Mn sites on partially graphitic carbon (Mn-N-C). Evidence for the embedding of the atomically dispersed MnN4 moieties within the carbon surface-exposed basal planes was established by X-ray absorption spectroscopy and their dispersion was confirmed by aberration-corrected electron microscopy with atomic resolution. The Mn-N-C catalyst exhibited a half-wave potential of 0.80 V versus the reversible hydrogen electrode, approaching that of Fe-N-C catalysts, along with significantly enhanced stability in acidic media. The encouraging performance of the Mn-N-C catalyst as a PGM-free cathode was demonstrated in fuel cell tests. First-principles calculations further support the MnN4 sites as the origin of the ORR activity via a 4e− pathway in acidic media. Platinum group metal- and iron-free catalysts are highly desirable for the oxygen reduction reaction in proton-exchange membrane fuel cells. Now, Wu and co-workers show a carbon catalyst with atomically dispersed single Mn sites as an efficient catalyst with enhanced stability in acidic media.
0

Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction

Gang Wu et al.Jul 1, 2013
P
G
Platinum-based catalysts represent a state of the art in the electrocatalysis of oxygen reduction reaction (ORR) from the point of view of their activity and durability in harnessing the chemical energy via direct electrochemical conversion. However, because platinum is both expensive and scarce, its widespread implementation in such clean energy applications is limited. Recent breakthroughs in the synthesis of high-performance nonprecious metal catalysts (NPMCs) make replacement of Pt in ORR electrocatalysts with earth-abundant elements, such as Fe, Co, N, and C, a realistic possibility. In this Account, we discuss how we can obtain highly promising M-N-C (M: Fe and/or Co) catalysts by simultaneously heat-treating precursors of nitrogen, carbon, and transition metals at 800-1000 °C. The activity and durability of resulting catalysts depend greatly on the selection of precursors and synthesis chemistry. In addition, they correlate quite well with the catalyst nanostructure. While chemists have presented no conclusive description of the active catalytic site for this class of NPMCs, they have developed a designed approach to making active and durable materials, focusing on the catalyst nanostructure. The approach consists of nitrogen doping, in situ carbon graphitization, and the usage of graphitic structures (possibly graphene and graphene oxides) as carbon precursors. Various forms of nitrogen, particularly pyridinic and quaternary, can act as n-type carbon dopants in the M-N-C catalysts, assisting in the formation of disordered carbon nanostructures and donating electrons to the carbon. The CNx structures are likely a crucial part of the ORR active site(s). Noteworthy, the ORR activity is not necessarily governed by the amount of nitrogen, but by how the nitrogen is incorporated into the nanostructures. Apart from the possibility of a direct participation in the active site, the transition metal often plays an important role in the in situ formation of various carbon nanostructures by catalyzing the decomposition of the nitrogen/carbon precursor. We can control the formation of different nanostructures during the synthesis of M-N-C catalysts. For example, in situ formed nitrogen-doped graphene-sheets can only be derived from polyaniline (PANI), probably due to structural similarities between the aromatic structures of PANI and graphene. Highly-graphitized carbon nanostructures may serve as a matrix for the formation of ORR-active groups with improved catalytic activity and durability, containing nitrogen and most probably also metal atoms. In the future, we will likely focus NPMC synthesis approaches on precise control of interactions between precursors of the metal and carbon/nitrogen during the heat treatment. The main purposes will be to maximize the number of active sites, optimize nitrogen doping levels, and generate morphologies capable of hosting active and stable ORR sites.
0

Nitrogen‐Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells

Xiao Wang et al.Jan 24, 2018
+12
Y
D
X
Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm-2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.
0

Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media

Hannah Osgood et al.Oct 1, 2016
+2
H
S
H
• Review transition metal oxide catalyst for electrochemical energy and conversion via O 2 electrocatalysis . • Provide an overview for cobalt, manganese, nickel, and iron oxide catalysts in terms of their synthesis, structure/morphology, and catalytic activity . • Focus on elucidation of synthesis–structure–activity correlations for metal oxide nanocomposite catalysts. • Discuss future oxide catalyst approaches to addressing challenges for ORR and OER catalysis. In recent years, a large amount of focus has been given to the development of alternative energy sources that are clean and efficient; among these, electrochemical energy holds potential for its compatibility with solar and wind energy, as well as their applications in fuel cells, and metal-air batteries, and water electrolyzers. However, these technologies require the use of highly active and stable catalysts to make these applications feasible. Current catalysts consist of precious metals such as platinum and iridium, which are expensive and block common access to electrochemical energy. Transition metals, and their oxides, serve as a promising alternative to these precious metals. due to their intrinsic activity and sufficient stability in oxidative electrochemical environments. Among wide range of these metals, cobalt, manganese, nickel, and iron, have been extensively explored as bifunctional catalysts, capable of simultaneously catalyzing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for energy storage and conversion. Not only do they show innate electrochemical capabilities, but their structural diversity, as well as their ability to be mixed, doped, and combined with other materials such as graphene, make transition metal oxides a highly attractive subject in electrochemical and materials research. This review serves to summarize the research currently available concerning transition metal oxides, and their applications as a bifunctional catalyst for the utilized fuel cells and rechargeable metal-air batteris in alkaline media. Particularly, oxide synthesis and their structural properties are related to their electrochemical abilities, along with their behavior when introduced to other catalytic materials and dopants.
0

Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy

Yanghua He et al.Oct 23, 2018
+14
D
S
Y
Platinum group metal (PGM)-free catalysts for oxygen reduction reaction are essential for affordable fuel cells.
0

Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition

Gang Wu et al.Jan 14, 2016
+5
W
A
G
Oxygen reduction reaction (ORR) and evolution reaction (OER) are one pair of the most important electrochemical reactions associated with energy conversion and storage technologies, such as fuel cells, metal–air batteries, and water electrolyzers. However, the sluggish ORR and OER requires a significantly large quantity of precious metals (e.g., Pt or Ir) to enhance reaction activity and durability. Highly active and robust nonprecious metal catalysts (NPMCs) are desperately required to address the cost and durability issues. Among NPMC formulations studied, carbon-based catalysts hold the greatest promise to replace these precious metals in the future due to their low-cost, extremely high surface area, excellent mechanical and electrical properties, sufficient stability under harsh environments, and high functionality. In particular, nitrogen-doped carbon nanocomposites, which were prepared from “metal-free” N–C formulations and transition metals-derived M–N–C (M=Fe or Co), have demonstrated remarkably improved catalytic activity and stability in alkaline and acidic electrolytes. In this review, based on the recent progress in the field, we aim to provide an overview for both types of carbon catalysts in terms of catalyst synthesis, structure/morphology, and catalytic activity and durability enhancement. We primarily focus on elucidation of synthesis–structure–activity correlations obtained from synthesis and extensive characterization, thereby providing guidance for rational design of advanced catalysts for the ORR. Additionally, a hybrid concept of using highly ORR active carbon nanocomposites to support Pt nanoparticles was highlighted with an aim to enhance catalytic performance and reduce required precious metal loading. Beyond the ORR, opportunities and challenges of ORR/OER bifunctional carbon composite catalysts were outlined. Perspectives on these carbon-based catalysts, future approaches, and possible pathways to address current remaining challenges are also discussed.
0

Experimental Observation of Redox-Induced Fe–N Switching Behavior as a Determinant Role for Oxygen Reduction Activity

Qingying Jia et al.Nov 13, 2015
+8
H
N
Q
The commercialization of electrochemical energy conversion and storage devices relies largely upon the development of highly active catalysts based on abundant and inexpensive materials. Despite recent achievements in this respect, further progress is hindered by the poor understanding of the nature of active sites and reaction mechanisms. Herein, by characterizing representative iron-based catalysts under reactive conditions, we identify three Fe–N4-like catalytic centers with distinctly different Fe–N switching behaviors (Fe moving toward or away from the N4-plane) during the oxygen reduction reaction (ORR), and show that their ORR activities are essentially governed by the dynamic structure associated with the Fe2+/3+ redox transition, rather than the static structure of the bare sites. Our findings reveal the structural origin of the enhanced catalytic activity of pyrolyzed Fe-based catalysts compared to nonpyrolyzed Fe-macrocycle compounds. More generally, the fundamental insights into the dynamic nature of transition-metal compounds during electron-transfer reactions will potentially guide rational design of these materials for broad applications.
0

Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells

Xiaohong Xie et al.Nov 30, 2020
+19
B
C
X
The development of catalysts free of platinum-group metals and with both a high activity and durability for the oxygen reduction reaction in proton exchange membrane fuel cells is a grand challenge. Here we report an atomically dispersed Co and N co-doped carbon (Co–N–C) catalyst with a high catalytic oxygen reduction reaction activity comparable to that of a similarly synthesized Fe–N–C catalyst but with a four-time enhanced durability. The Co–N–C catalyst achieved a current density of 0.022 A cm−2 at 0.9 ViR-free (internal resistance-compensated voltage) and peak power density of 0.64 W cm−2 in 1.0 bar H2/O2 fuel cells, higher than that of non-iron platinum-group-metal-free catalysts reported in the literature. Importantly, we identified two main degradation mechanisms for metal (M)–N–C catalysts: catalyst oxidation by radicals and active-site demetallation. The enhanced durability of Co–N–C relative to Fe–N–C is attributed to the lower activity of Co ions for Fenton reactions that produce radicals from the main oxygen reduction reaction by-product, H2O2, and the significantly enhanced resistance to demetallation of Co–N–C. Platinum-group-metal-free, non-iron catalysts are highly desirable for the oxygen reduction reaction at proton exchange membrane (PEM) fuel cell cathodes, as they avoid the detrimental Fenton reactions. Now, a cobalt and nitrogen co-doped carbon catalyst with atomically dispersed porphyrin-like CoN4C12 sites is reported with an improved activity and durability in PEM fuel cell conditions.
Load More