IS
Ivan Sinev
Author with expertise in Plasmonics and Nanophotonics Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
469
h-index:
20
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces

Carlota Galarreta et al.Apr 8, 2020
All-dielectric metasurfaces comprising arrays of nanostructured high-refractive-index materials are re-imagining what is achievable in terms of the manipulation of light. However, the functionality of conventional dielectric-based metasurfaces is fixed by design; thus, their optical response is locked in at the fabrication stage. A far wider range of applications could be addressed if dynamic and reconfigurable control were possible. We demonstrate this here via the novel concept of hybrid metasurfaces, in which reconfigurability is achieved by embedding sub-wavelength inclusions of chalcogenide phase-change materials within the body of silicon nanoresonators. By strategic placement of an ultra-thin G e 2 S b 2 T e 5 layer and reversible switching of its phase-state, we show individual, multilevel, and dynamic control of metasurface resonances. We showcase our concept via the design, fabrication, and characterization of metadevices capable of dynamically filtering and modulating light in the near infrared (O and C telecom bands), with modulation depths as high as 70% and multilevel tunability. Finally, we show numerically how the same approach can be re-scaled to shorter wavelengths via appropriate material selection, paving the way to additional applications, such as high-efficiency vivid structural color generators in the visible spectrum. We believe that the concept of hybrid all-dielectric/phase-change metasurfaces presented in this work could pave the way for a wide range of design possibilities in terms of multilevel, reconfigurable, and high-efficiency light manipulation.
0

Thermo‐Optical Bistability Enabled by Bound States in The Continuum in Silicon Metasurfaces

А. Барулин et al.Jun 3, 2024
Abstract The control of light through all‐optical means is a fundamental challenge in nanophotonics and a key effect in optical switching and logic. The optical bistability effect enables this control and can be observed in various planar photonic systems such as microdisk and photonic crystal cavities and waveguides. However, the recent advancements in flat optics with wavelength‐thin optical elements require nonlinear elements based on metastructures and metasurfaces. The performance of these systems can be enhanced with high‐Q bound states in the continuum (BIC), which leads to intense harmonic generation, improved light‐matter coupling, and pushes forward sensing limits. This study reports enhanced thermo‐optical nonlinearity and the observation of optical bistability in an all‐dielectric metasurface membrane with BIC. Unlike many other nanophotonic platforms, metasurfaces allow for fine control of the quality factor of the BIC resonance by managing the radiative losses. This provides an opportunity to control the parameters of the observed hysteresis loop and even switch from bistability to optical discrimination by varying the angle of incidence. Additionally, this work proposes a mechanism of nonlinear critical coupling that establishes the conditions for maximal hysteresis width and minimal switching power, which has not been reported before. The study suggests that all‐dielectric metasurfaces supporting BICs can serve as a flat‐optics platform for optical switching and modulation based on strong thermo‐optical nonlinearity.