YL
Yuer Lu
Author with expertise in Computational Methods in Drug Discovery
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
3
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multi-task aquatic toxicity prediction model based on multi-level features fusion

Xin Yang et al.Jun 1, 2024
With the escalating menace of organic compounds in environmental pollution imperiling the survival of aquatic organisms, the investigation of organic compound toxicity across diverse aquatic species assumes paramount significance for environmental protection. Understanding how different species respond to these compounds helps assess the potential ecological impact of pollution on aquatic ecosystems as a whole. Compared with traditional experimental methods, deep learning methods have higher accuracy in predicting aquatic toxicity, faster data processing speed and better generalization ability. This article presents ATFPGT-multi, an advanced multi-task deep neural network prediction model for organic toxicity. The model integrates molecular fingerprints and molecule graphs to characterize molecules, enabling the simultaneous prediction of acute toxicity for the same organic compound across four distinct fish species. Furthermore, to validate the advantages of multi-task learning, we independently construct prediction models, named ATFPGT-single, for each fish species. We employ cross-validation in our experiments to assess the performance and generalization ability of ATFPGT-multi. The experimental results indicate, first, that ATFPGT-multi outperforms ATFPGT-single on four fish datasets with AUC improvements of 9.8%, 4%, 4.8%, and 8.2%, respectively, demonstrating the superiority of multi-task learning over single-task learning. Furthermore, in comparison with previous algorithms, ATFPGT-multi outperforms comparative methods, emphasizing that our approach exhibits higher accuracy and reliability in predicting aquatic toxicity. Moreover, ATFPGT-multi utilizes attention scores to identify molecular fragments associated with fish toxicity in organic molecules, as demonstrated by two organic molecule examples in the main text, demonstrating the interpretability of ATFPGT-multi. In summary, ATFPGT-multi provides important support and reference for the further development of aquatic toxicity assessment. All of codes and datasets are freely available online at https://github.com/zhaoqi106/ATFPGT-multi.
0
Paper
Citation3
0
Save
0

UNet-Att: a self-supervised denoising and recovery model for two-photon microscopic image

Yuer Lu et al.Nov 26, 2024
Two-photon microscopy is indispensable in cell and molecular biology for its high-resolution visualization of cellular and molecular dynamics. However, the inevitable low signal-to-noise conditions significantly degrade image quality, obscuring essential details and complicating morphological analysis. While existing denoising methods such as CNNs, Noise2Noise, and DeepCAD serve broad applications in imaging, they still have limitations in preserving texture structures and fine details in two-photon microscopic images affected by complex noise, particularly in sophisticated structures like neuronal synapses. To improve two-photon microscopy image denoising effectiveness, by experimenting on real two-photon microscopy images, we propose a novel deep learning framework, the UNet-Att model, which integrates a specifically tailored UNet++ architecture with attention mechanisms. Specifically, this approach consists of a sophisticated downsampling module for extracting hierarchical features at varied scales, and an innovative attention module that strategically emphasizes salient features during the integration process. The architecture is completed by an ingenious upsampling pathway that reconstructs the image with high fidelity, ensuring the retention of textural integrity. Additionally, the model supports end-to-end training, optimizing its denoising efficacy. The UNet-Att model proves to surpass mainstream algorithms in the dual objectives of denoising and preserving the textural intricacies of original images, which is evidenced by an increase of 9.42 dB in the high Peak Signal-to-Noise Ratio (PSNR) coupled with an improvement of 0.1131 in the Structural Similarity Index Measurement (SSIM). The ablation experiments reveal the effectiveness of each module. The associated Python packages and datasets of UNet-Att are freely available at https://github.com/ZjjDh/UNet-Att .