GO
Gregory Okin
Author with expertise in Aeolian Geomorphology and Wind Erosion Dynamics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(67% Open Access)
Cited by:
3,434
h-index:
56
/
i10-index:
138
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems

Gregory Okin et al.Apr 21, 2004
Leaching, biomass removal, and partitioning of phosphorus (P) into reservoirs not available to plants can limit the long‐term productivity of terrestrial ecosystems. We evaluate the importance of atmospheric P inputs to the world's soils by estimating the total soil P turnover time with respect to dustborne P additions. Estimated turnover times range from ∼10 4 to ∼10 7 years. Our estimates provide a unique perspective on the importance and patterns of aeolian deposition to terrestrial landscapes. Dust source regions are areas of intense soil P cycling on large scales, but are too water‐limited for this rapid cycling to have a major influence on ecosystem dynamics. By contrast, semiarid desert margins receive significant aeolian P from neighboring deserts and are likely influenced by dustborne P additions for the long‐term maintenance of productivity. This is particularly true for the semiarid steppes of Africa and Eurasia. The prevalence of large dust sources in Africa and Eurasia indicates that these areas may generally be more influenced by dustborne P additions than soils in the Americas. Significant western hemisphere exceptions to this pattern occur on very old landscapes, such as the forests of the southeastern United States and the Amazon Basin. The Amazon Basin is highly dependent on aeolian deposition for the maintenance of long‐term productivity. Dust deposition to terrestrial environments has not been constant with time. Variability in past P deposition related to geologically recent climate change may provide the strongest controls on present and future soil P in the Amazon and elsewhere.
0
Paper
Citation502
0
Save
0

On soil moisture–vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems

Paolo D’Odorico et al.Dec 1, 2007
Soil moisture is the environmental variable synthesizing the effect of climate, soil, and vegetation on the dynamics of water‐limited ecosystems. Unlike abiotic factors (e.g., soil texture and rainfall regime), the control exerted by vegetation composition and structure on soil moisture variability remains poorly understood. A number of field studies in dryland landscapes have found higher soil water contents in vegetated soil patches than in adjacent bare soil, providing a convincing explanation for the observed preferential establishment of grasses and seedlings beneath tree canopies. Thus, because water is the limiting factor for vegetation in arid and semiarid ecosystems, a positive feedback could exist between soil moisture and woody vegetation dynamics. It is still unclear how the strength of such a feedback would change under different long‐term rainfall regimes. To this end, we report some field observations from savanna ecosystems located along the south‐north rainfall gradient in the Kalahari, where the presence of relatively uniform sandy soils limits the effects of covarying factors. The data available from our field study suggest that the contrast between the soil moisture in the canopy and intercanopy space increases (with wetter soils under the canopy) with increasing levels of aridity. We hypothesize that this contrast may lead to a positive feedback and explore the implications of such a feedback in a minimalistic model. We found that when the feedback is relatively strong, the system may exhibit two stable states corresponding to conditions with and without tree canopy cover. In this case, even small changes in environmental variables may lead to rapid and largely irreversible shifts to a state with no tree canopy cover. Our data suggest that the tendency of the system to exhibit two (alternative) stable states becomes stronger in the more arid regions. Thus, at the desert margins, vegetation is more likely to be prone to discontinuous and abrupt state changes.
0
Paper
Citation315
0
Save
0

A new model of wind erosion in the presence of vegetation

Gregory OkinMar 7, 2008
Vegetation is known to impact strongly the erosion of soil by the wind. Lateral cover is the primary parameter used to represent the amount of vegetation in aeolian research and, in particular, shear stress partitioning research. Although lateral cover provides a simple means for representing how much vegetation is in an area, it is not capable of characterizing how vegetation is distributed. A new, nonequilibrium model for the representation of nonerodible roughness elements is presented that uses the size distribution of erodible gaps between plants to characterize the ratio of the maximum shear stress to the average shear stress at the surface. The model shows very good agreement with measured shear stress ratios from the laboratory and field experiments. The model also satisfactorily explains relatively high horizontal aeolian sediment flux at high lateral cover. The relationship between this model and another shear stress partitioning model is explored, and the new model is found to be superior to the existing model because it (1) utilizes parameters with physical meaning that are measurable in the field or laboratory, (2) explains observations of horizontal flux at high cover, (3) overcomes difficulties inherent in the use of lateral cover to characterize vegetation on the surface, (4) is scale‐explicit, and (5) can be used at multiple scales from an individual unvegetated gap to an entire landscape.
0
Paper
Citation312
0
Save
0

AEOLIAN PROCESSES AND THE BIOSPHERE

Sujith Ravi et al.Aug 2, 2011
Aeolian processes affect the biosphere in a wide variety of contexts, including landform evolution, biogeochemical cycles, regional climate, human health, and desertification. Collectively, research on aeolian processes and the biosphere is developing rapidly in many diverse and specialized areas, but integration of these recent advances is needed to better address management issues and to set future research priorities. Here we review recent literature on aeolian processes and their interactions with the biosphere, focusing on (1) geography of dust emissions, (2) impacts, interactions, and feedbacks, (3) drivers of dust emissions, and (4) methodological approaches. Geographically, dust emissions are highly spatially variable but also provide connectivity at global scales between sources and effects, with “hot spots” being of particular concern. Recent research reveals that aeolian processes have impacts, interactions, and feedbacks at a variety of scales, including large‐scale dust transport and global biogeochemical cycles, climate mediated interactions between atmospheric dust and ecosystems, impacts on human health, impacts on agriculture, and interactions between aeolian processes and dryland vegetation. Aeolian dust emissions are driven largely by, in addition to climate, a combination of soil properties, soil moisture, vegetation and roughness, biological and physical crusts, and disturbances. Aeolian research methods span laboratory and field techniques, modeling, and remote sensing. Together these integrated perspectives on aeolian processes and the biosphere provide insights into management options and aid in identifying research priorities, both of which are increasingly important given that global climate models predict an increase in aridity in many dryland systems of the world.
0
Paper
Citation287
0
Save
0

Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau

Seth Munson et al.Feb 22, 2011
Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces.
0
Paper
Citation281
0
Save
0

Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron

Gregory Okin et al.Jun 1, 2011
Nutrients are supplied to the mixed layer of the open ocean by either atmospheric deposition or mixing from deeper waters, and these nutrients drive nitrogen and carbon fixation. To evaluate the importance of atmospheric deposition, we estimate marine nitrogen and carbon fixation from present-day simulations of atmospheric deposition of nitrogen, phosphorus, and iron. These are compared with observed rates of marine nitrogen and carbon fixation. We find that Fe deposition is more important than P deposition in supporting N fixation. Estimated rates of atmospherically supported carbon fixation are considerably lower than rates of marine carbon fixation derived from remote sensing, indicating the subsidiary role atmospheric deposition plays in total C uptake by the oceans. Nonetheless, in high-nutrient, low-chlorophyll areas, the contribution of atmospheric deposition of Fe to the surface ocean could account for about 50% of C fixation. In marine areas typically thought to be N limited, potential C fixation supported by atmospheric deposition of N is only ~1%-2% of observed rates. Although these systems are N-limited, the amount of N supplied from below appears to be much larger than that deposited from above. Atmospheric deposition of Fe has the potential to augment atmospherically supported rates of C fixation in N-limited areas. In these areas, atmospheric Fe relieves the Fe limitation of diazotrophic organisms, thus contributing to the rate of N fixation. The most important uncertainties in understanding the relative importance of different atmospheric nutrients are poorly understood speciation and solubility of Fe as well as the N:Fe ratio of diazotrophic organisms.
0
Paper
Citation236
0
Save
0

Atmospheric fluxes of organic N and P to the global ocean

Maria Kanakidou et al.Aug 3, 2012
The global tropospheric budget of gaseous and particulate non‐methane organic matter (OM) is re‐examined to provide a holistic view of the role that OM plays in transporting the essential nutrients nitrogen and phosphorus to the ocean. A global 3‐dimensional chemistry‐transport model was used to construct the first global picture of atmospheric transport and deposition of the organic nitrogen (ON) and organic phosphorus (OP) that are associated with OM, focusing on the soluble fractions of these nutrients. Model simulations agree with observations within an order of magnitude. Depending on location, the observed water soluble ON fraction ranges from ∼3% to 90% (median of ∼35%) of total soluble N in rainwater; soluble OP ranges from ∼20–83% (median of ∼35%) of total soluble phosphorus. The simulations suggest that the global ON cycle has a strong anthropogenic component with ∼45% of the overall atmospheric source (primary and secondary) associated with anthropogenic activities. In contrast, only 10% of atmospheric OP is emitted from human activities. The model‐derived present‐day soluble ON and OP deposition to the global ocean is estimated to be ∼16 Tg‐N/yr and ∼0.35 Tg‐P/yr respectively with an order of magnitude uncertainty. Of these amounts ∼40% and ∼6%, respectively, are associated with anthropogenic activities, and 33% and 90% are recycled oceanic materials. Therefore, anthropogenic emissions are having a greater impact on the ON cycle than the OP cycle; consequently increasing emissions may increase P‐limitation in the oligotrophic regions of the world's ocean that rely on atmospheric deposition as an important nutrient source.
0
Paper
Citation230
0
Save
0

A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean

Tim Jickells et al.Jan 21, 2017
Abstract We report a new synthesis of best estimates of the inputs of fixed nitrogen to the world ocean via atmospheric deposition and compare this to fluvial inputs and dinitrogen fixation. We evaluate the scale of human perturbation of these fluxes. Fluvial inputs dominate inputs to the continental shelf, and we estimate that about 75% of this fluvial nitrogen escapes from the shelf to the open ocean. Biological dinitrogen fixation is the main external source of nitrogen to the open ocean, i.e., beyond the continental shelf. Atmospheric deposition is the primary mechanism by which land‐based nitrogen inputs, and hence human perturbations of the nitrogen cycle, reach the open ocean. We estimate that anthropogenic inputs are currently leading to an increase in overall ocean carbon sequestration of ~0.4% (equivalent to an uptake of 0.15 Pg C yr −1 and less than the Duce et al. (2008) estimate). The resulting reduction in climate change forcing from this ocean CO 2 uptake is offset to a small extent by an increase in ocean N 2 O emissions. We identify four important feedbacks in the ocean atmosphere nitrogen system that need to be better quantified to improve our understanding of the perturbation of ocean biogeochemistry by atmospheric nitrogen inputs. These feedbacks are recycling of (1) ammonia and (2) organic nitrogen from the ocean to the atmosphere and back, (3) the suppression of nitrogen fixation by increased nitrogen concentrations in surface waters from atmospheric deposition, and (4) increased loss of nitrogen from the ocean by denitrification due to increased productivity stimulated by atmospheric inputs.
0
Paper
Citation220
0
Save
Load More