KN
Ki Nam
Author with expertise in Membrane Gas Separation Technology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
1
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Highly Permeable Mixed Matrix Membranes for Gas Separation via Dual Defect‐Engineered Zeolitic Imidazolate Framework‐8

Jihyoun Seong et al.Jun 11, 2024
Abstract Defect engineering of metal–organic frameworks (MOFs) is a promising strategy for tailoring the interfacial characteristics between MOFs and polymers, aiming to create high‐performance mixed matrix membranes (MMMs). This study introduces a new approach using dual defective alkylamine (AA)‐modulated zeolitic imidazolate framework‐8 (DAZIF‐8), to develop high‐flux MMMs. Tributylamine (TBA) and triethylamine (TEA) monodentate ligands coordinate with zinc ions in varying compositions. A mixture of Zn(CH 3 COO) 2 ·2H 2 O:2‐methylimidazole (Mim):AA in a 1:1.75:5 molar ratio facilitates high‐yield coordination between Zn and multiple organic ligands, including Zn‐Mim, Zn‐TEA, and Zn‐TBA (>80%). Remarkably, DAZIF‐8 containing 3 mol% TBA and 2 mol% TEA exhibits exceptional characteristics, such as a Brunauer–Emmett–Teller surface area of 1745 m 2 g −1 and enhanced framework rigidity. Furthermore, dual Zn‐AA coordination sites on the framework's outer surface enhance compatibility with the polyimide (PI) matrix through electron donor–acceptor interactions, enabling the fabrication of high‐loading MMMs with excellent mechanical durability. Importantly, the PI/DAZIF‐8 (60/40 w/w) MMM demonstrates an unprecedented 759% enhancement in ethylene (C 2 H 4 ) permeability (281 Barrer) with a moderate ethylene/ethane (C 2 H 4 /C 2 H 6 ) selectivity of 2.95 compared to the PI, surpassing the polymeric upper limit for C 2 H 4 /C 2 H 6 separation.
0
Citation1
0
Save
0

In Situ Synthesis of MIL-160 Tubular Membrane with High Selectivity for Gas Separation

Hsiang‐Yu Wang et al.Jan 7, 2025
Metal–organic frameworks (MOFs) are a rapidly growing class of crystalline porous materials known for their high surface area and tunable porosity, making them ideal for various applications, including gas separation. While the utility of MOFs primarily stems from their intrinsic micropores, fabricating MOF-based membranes further enhances their applicability, particularly in CO2 separation from flue gas (CO2/N2) and natural gas (CO2/CH4). In this work, we developed an in situ synthesis method to fabricate MIL-160 membranes on ceramic tubular substrates for gas separation. MIL-160, with its three-dimensional interconnected channels and a pore-limiting diameter of 4.3 Å, is well-suited for separating small gas molecules. Through multiple synthesis trials, we produced MIL-160 membranes with distinct crystal morphologies─ball, flake, and cuboid─and characterized them using X-ray diffraction, scanning electron microscopy, nitrogen physisorption, gas adsorption, thermogravimetric analysis, and confocal microscopy. The crystal morphology was found to significantly influence membrane quality, particularly in reducing grain boundaries and pinholes. Confocal microscopy revealed substantial defects in the ball- and flake-shaped membranes, while the cuboid-shaped membrane showed minimal dye infiltration, indicating fewer defects and a more uniform structure. Single-gas permeation tests confirmed the superior performance of the cuboid-shaped MIL-160 membrane, achieving ideal CO2/N2 and CO2/CH4 selectivities of 56.8 and 130, respectively, with a CO2 permeance of 75.5 GPU. In mixed-gas tests, the membrane reached a CO2/N2 selectivity of 259 at XCO2 = 0.5, and a CO2/CH4 selectivity of 224 at XCO2 = 0.2. Additionally, molecular simulations of binary gas adsorption supported these findings, demonstrating competitive CO2 adsorption in the presence of N2 and CH4. This study highlights the potential of in situ synthesis of MIL-160 membranes on tubular substrates as a scalable and effective solution for CO2 removal from flue gas and natural gas.