CT
Christian Theobalt
Author with expertise in Stereo Vision and Depth Estimation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
59
(59% Open Access)
Cited by:
15,860
h-index:
99
/
i10-index:
341
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Face2Face: Real-Time Face Capture and Reenactment of RGB Videos

Justus Thies et al.Jun 1, 2016
We present a novel approach for real-time facial reenactment of a monocular target video sequence (e.g., Youtube video). The source sequence is also a monocular video stream, captured live with a commodity webcam. Our goal is to animate the facial expressions of the target video by a source actor and re-render the manipulated output video in a photo-realistic fashion. To this end, we first address the under-constrained problem of facial identity recovery from monocular video by non-rigid model-based bundling. At run time, we track facial expressions of both source and target video using a dense photometric consistency measure. Reenactment is then achieved by fast and efficient deformation transfer between source and target. The mouth interior that best matches the re-targeted expression is retrieved from the target sequence and warped to produce an accurate fit. Finally, we convincingly re-render the synthesized target face on top of the corresponding video stream such that it seamlessly blends with the real-world illumination. We demonstrate our method in a live setup, where Youtube videos are reenacted in real time.
0

VNect

Dushyant Mehta et al.Jul 20, 2017
We present the first real-time method to capture the full global 3D skeletal pose of a human in a stable, temporally consistent manner using a single RGB camera. Our method combines a new convolutional neural network (CNN) based pose regressor with kinematic skeleton fitting. Our novel fully-convolutional pose formulation regresses 2D and 3D joint positions jointly in real time and does not require tightly cropped input frames. A real-time kinematic skeleton fitting method uses the CNN output to yield temporally stable 3D global pose reconstructions on the basis of a coherent kinematic skeleton. This makes our approach the first monocular RGB method usable in real-time applications such as 3D character control---thus far, the only monocular methods for such applications employed specialized RGB-D cameras. Our method's accuracy is quantitatively on par with the best offline 3D monocular RGB pose estimation methods. Our results are qualitatively comparable to, and sometimes better than, results from monocular RGB-D approaches, such as the Kinect. However, we show that our approach is more broadly applicable than RGB-D solutions, i.e., it works for outdoor scenes, community videos, and low quality commodity RGB cameras.
0

Monocular 3D Human Pose Estimation in the Wild Using Improved CNN Supervision

Dushyant Mehta et al.Oct 1, 2017
We propose a CNN-based approach for 3D human body pose estimation from single RGB images that addresses the issue of limited generalizability of models trained solely on the starkly limited publicly available 3D pose data. Using only the existing 3D pose data and 2D pose data, we show state-of-the-art performance on established benchmarks through transfer of learned features, while also generalizing to in-the-wild scenes. We further introduce a new training set for human body pose estimation from monocular images of real humans that has the ground truth captured with a multi-camera marker-less motion capture system. It complements existing corpora with greater diversity in pose, human appearance, clothing, occlusion, and viewpoints, and enables an increased scope of augmentation. We also contribute a new benchmark that covers outdoor and indoor scenes, and demonstrate that our 3D pose dataset shows better in-the-wild performance than existing annotated data, which is further improved in conjunction with transfer learning from 2D pose data. All in all, we argue that the use of transfer learning of representations in tandem with algorithmic and data contributions is crucial for general 3D body pose estimation.
0

Deep video portraits

Hyeongwoo Kim et al.Jul 30, 2018
We present a novel approach that enables photo-realistic re-animation of portrait videos using only an input video. In contrast to existing approaches that are restricted to manipulations of facial expressions only, we are the first to transfer the full 3D head position, head rotation, face expression, eye gaze, and eye blinking from a source actor to a portrait video of a target actor. The core of our approach is a generative neural network with a novel space-time architecture. The network takes as input synthetic renderings of a parametric face model, based on which it predicts photo-realistic video frames for a given target actor. The realism in this rendering-to-video transfer is achieved by careful adversarial training, and as a result, we can create modified target videos that mimic the behavior of the synthetically-created input. In order to enable source-to-target video re-animation, we render a synthetic target video with the reconstructed head animation parameters from a source video, and feed it into the trained network - thus taking full control of the target. With the ability to freely recombine source and target parameters, we are able to demonstrate a large variety of video rewrite applications without explicitly modeling hair, body or background. For instance, we can reenact the full head using interactive user-controlled editing, and realize high-fidelity visual dubbing. To demonstrate the high quality of our output, we conduct an extensive series of experiments and evaluations, where for instance a user study shows that our video edits are hard to detect.
0

BundleFusion

Angela Dai et al.Jul 16, 2017
Real-time, high-quality, 3D scanning of large-scale scenes is key to mixed reality and robotic applications. However, scalability brings challenges of drift in pose estimation, introducing significant errors in the accumulated model. Approaches often require hours of offline processing to globally correct model errors. Recent online methods demonstrate compelling results but suffer from (1) needing minutes to perform online correction, preventing true real-time use; (2) brittle frame-to-frame (or frame-to-model) pose estimation, resulting in many tracking failures; or (3) supporting only unstructured point-based representations, which limit scan quality and applicability. We systematically address these issues with a novel, real-time, end-to-end reconstruction framework. At its core is a robust pose estimation strategy, optimizing per frame for a global set of camera poses by considering the complete history of RGB-D input with an efficient hierarchical approach. We remove the heavy reliance on temporal tracking and continually localize to the globally optimized frames instead. We contribute a parallelizable optimization framework, which employs correspondences based on sparse features and dense geometric and photometric matching. Our approach estimates globally optimized (i.e., bundle adjusted) poses in real time, supports robust tracking with recovery from gross tracking failures (i.e., relocalization), and re-estimates the 3D model in real time to ensure global consistency, all within a single framework. Our approach outperforms state-of-the-art online systems with quality on par to offline methods, but with unprecedented speed and scan completeness. Our framework leads to a comprehensive online scanning solution for large indoor environments, enabling ease of use and high-quality results. 1
0
Paper
Citation555
0
Save
0

Performance capture from sparse multi-view video

Edilson Aguiar et al.Aug 1, 2008
This paper proposes a new marker-less approach to capturing human performances from multi-view video. Our algorithm can jointly reconstruct spatio-temporally coherent geometry, motion and textural surface appearance of actors that perform complex and rapid moves. Furthermore, since our algorithm is purely meshbased and makes as few as possible prior assumptions about the type of subject being tracked, it can even capture performances of people wearing wide apparel, such as a dancer wearing a skirt. To serve this purpose our method efficiently and effectively combines the power of surface- and volume-based shape deformation techniques with a new mesh-based analysis-through-synthesis framework. This framework extracts motion constraints from video and makes the laser-scan of the tracked subject mimic the recorded performance. Also small-scale time-varying shape detail is recovered by applying model-guided multi-view stereo to refine the model surface. Our method delivers captured performance data at high level of detail, is highly versatile, and is applicable to many complex types of scenes that could not be handled by alternative marker-based or marker-free recording techniques.
0

Free-viewpoint video of human actors

Joel Carranza et al.Jul 1, 2003
In free-viewpoint video, the viewer can interactively choose his viewpoint in 3-D space to observe the action of a dynamic real-world scene from arbitrary perspectives. The human body and its motion plays a central role in most visual media and its structure can be exploited for robust motion estimation and efficient visualization. This paper describes a system that uses multi-view synchronized video footage of an actor's performance to estimate motion parameters and to interactively re-render the actor's appearance from any viewpoint.The actor's silhouettes are extracted from synchronized video frames via background segmentation and then used to determine a sequence of poses for a 3D human body model. By employing multi-view texturing during rendering, time-dependent changes in the body surface are reproduced in high detail. The motion capture subsystem runs offline, is non-intrusive, yields robust motion parameter estimates, and can cope with a broad range of motion. The rendering subsystem runs at real-time frame rates using ubiquous graphics hardware, yielding a highly naturalistic impression of the actor. The actor can be placed in virtual environments to create composite dynamic scenes. Free-viewpoint video allows the creation of camera fly-throughs or viewing the action interactively from arbitrary perspectives.
0

Real-time non-rigid reconstruction using an RGB-D camera

Michael Zollhöfer et al.Jul 22, 2014
We present a combined hardware and software solution for markerless reconstruction of non-rigidly deforming physical objects with arbitrary shape in real-time . Our system uses a single self-contained stereo camera unit built from off-the-shelf components and consumer graphics hardware to generate spatio-temporally coherent 3D models at 30 Hz. A new stereo matching algorithm estimates real-time RGB-D data. We start by scanning a smooth template model of the subject as they move rigidly. This geometric surface prior avoids strong scene assumptions, such as a kinematic human skeleton or a parametric shape model. Next, a novel GPU pipeline performs non-rigid registration of live RGB-D data to the smooth template using an extended non-linear as-rigid-as-possible (ARAP) framework. High-frequency details are fused onto the final mesh using a linear deformation model. The system is an order of magnitude faster than state-of-the-art methods, while matching the quality and robustness of many offline algorithms. We show precise real-time reconstructions of diverse scenes, including: large deformations of users' heads, hands, and upper bodies; fine-scale wrinkles and folds of skin and clothing; and non-rigid interactions performed by users on flexible objects such as toys. We demonstrate how acquired models can be used for many interactive scenarios, including re-texturing, online performance capture and preview, and real-time shape and motion re-targeting.
Load More