TA
Thiemo Alldieck
Author with expertise in Analysis of Three-Dimensional Shape Structures
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
1,633
h-index:
15
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion

Julian Chibane et al.Jun 1, 2020
While many works focus on 3D reconstruction from images, in this paper, we focus on 3D shape reconstruction and completion from a variety of 3D inputs, which are deficient in some respect: low and high resolution voxels, sparse and dense point clouds, complete or incomplete. Processing of such 3D inputs is an increasingly important problem as they are the output of 3D scanners, which are becoming more accessible, and are the intermediate output of 3D computer vision algorithms. Recently, learned implicit functions have shown great promise as they produce continuous reconstructions. However, we identified two limitations in reconstruction from 3D inputs: 1) details present in the input data are not retained, and 2) poor reconstruction of articulated humans. To solve this, we propose Implicit Feature Networks (IF-Nets), which deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data retaining the nice properties of recent learned implicit functions, but critically they can also retain detail when it is present in the input data, and can reconstruct articulated humans. Our work differs from prior work in two crucial aspects. First, instead of using a single vector to encode a 3D shape, we extract a learnable 3-dimensional multi-scale tensor of deep features, which is aligned with the original Euclidean space embedding the shape. Second, instead of classifying x-y-z point coordinates directly, we classify deep features extracted from the tensor at a continuous query point. We show that this forces our model to make decisions based on global and local shape structure, as opposed to point coordinates, which are arbitrary under Euclidean transformations. Experiments demonstrate that IF-Nets outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions. Code and project website is available at https://virtualhumans.mpi-inf.mpg.de/ifnets/.
0
Citation409
0
Save
0

Learning to Reconstruct People in Clothing From a Single RGB Camera

Thiemo Alldieck et al.Jun 1, 2019
We present Octopus, a learning-based model to infer the personalized 3D shape of people from a few frames (1-8) of a monocular video in which the person is moving with a reconstruction accuracy of 4 to 5mm, while being orders of magnitude faster than previous methods. From semantic segmentation images, our Octopus model reconstructs a 3D shape, including the parameters of SMPL plus clothing and hair in 10 seconds or less. The model achieves fast and accurate predictions based on two key design choices. First, by predicting shape in a canonical T-pose space, the network learns to encode the images of the person into pose-invariant latent codes, where the information is fused. Second, based on the observation that feed-forward predictions are fast but do not always align with the input images, we predict using both, bottom-up and top-down streams (one per view) allowing information to flow in both directions. Learning relies only on synthetic 3D data. Once learned, Octopus can take a variable number of frames as input, and is able to reconstruct shapes even from a single image with an accuracy of 5mm. Results on 3 different datasets demonstrate the efficacy and accuracy of our approach.