HL
Hongbo Li
Author with expertise in Applications of Quantum Dots in Nanotechnology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(29% Open Access)
Cited by:
2,766
h-index:
45
/
i10-index:
122
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content

Wenyong Liu et al.Oct 19, 2016
Impurity doping has been widely used to endow semiconductor nanocrystals with novel optical, electronic, and magnetic functionalities. Here, we introduce a new family of doped NCs offering unique insights into the chemical mechanism of doping, as well as into the fundamental interactions between the dopant and the semiconductor host. Specifically, by elucidating the role of relative bond strengths within the precursor and the host lattice, we develop an effective approach for incorporating manganese (Mn) ions into nanocrystals of lead-halide perovskites (CsPbX3, where X = Cl, Br, or I). In a key enabling step not possible in, for example, II-VI nanocrystals, we use gentle chemical means to finely and reversibly tune the nanocrystal band gap over a wide range of energies (1.8-3.1 eV) via postsynthetic anion exchange. We observe a dramatic effect of halide identity on relative intensities of intrinsic band-edge and Mn emission bands, which we ascribe to the influence of the energy difference between the corresponding transitions on the characteristics of energy transfer between the Mn ion and the semiconductor host.
0

Tandem luminescent solar concentrators based on engineered quantum dots

Kaifeng Wu et al.Dec 21, 2017
Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors for terrestrial and space-based photovoltaics. Due to their high emission efficiencies and readily tunable emission and absorption spectra, colloidal quantum dots have emerged as a new and promising type of LSC fluorophore. Spectral tunability of the quantum dots also facilitates the realization of stacked multilayered LSCs, where enhanced performance is obtained through spectral splitting of incident sunlight, as in multijunction photovoltaics. Here, we demonstrate a large-area (>230 cm2) tandem LSC based on two types of nearly reabsorption-free quantum dots spectrally tuned for optimal solar-spectrum splitting. This prototype device exhibits a high optical quantum efficiency of 6.4% for sunlight illumination and solar-to-electrical power conversion efficiency of 3.1%. The efficiency gains due to the tandem architecture over single-layer devices quickly increase with increasing LSC size and can reach more than 100% in structures with window sizes of more than 2,500 cm2. Multijunctions have long been used to enhance photovoltaic solar cell efficiency. Here, a large-area tandem luminescent solar concentrator is demonstrated using two types of quantum dot with low reabsorption.
0
Paper
Citation315
0
Save
0

Thick-Shell CuInS2/ZnS Quantum Dots with Suppressed “Blinking” and Narrow Single-Particle Emission Line Widths

Huidong Zang et al.Feb 7, 2017
Quantum dots (QDs) of ternary I–III–VI2 compounds such as CuInS2 and CuInSe2 have been actively investigated as heavy-metal-free alternatives to cadmium- and lead-containing semiconductor nanomaterials. One serious limitation of these nanostructures, however, is a large photoluminescence (PL) line width (typically >300 meV), the origin of which is still not fully understood. It remains even unclear whether the observed broadening results from considerable sample heterogeneities (due, e.g., to size polydispersity) or is an unavoidable intrinsic property of individual QDs. Here, we answer this question by conducting single-particle measurements on a new type of CuInS2 (CIS) QDs with an especially thick ZnS shell. These QDs show a greatly enhanced photostability compared to core-only or thin-shell samples and, importantly, exhibit a strongly suppressed PL blinking at the single-dot level. Spectrally resolved measurements reveal that the single-dot, room-temperature PL line width is much narrower (down to ∼60 meV) than that of the ensemble samples. To explain this distinction, we invoke a model wherein PL from CIS QDs arises from radiative recombination of a delocalized band-edge electron and a localized hole residing on a Cu-related defect and also account for the effects of electron–hole Coulomb coupling. We show that random positioning of the emitting center in the QD can lead to more than 300 meV variation in the PL energy, which represents at least one of the reasons for large PL broadening of the ensemble samples. These results suggest that in addition to narrowing size dispersion, future efforts on tightening the emission spectra of these QDs might also attempt decreasing the "positional" heterogeneity of the emitting centers.
0
Paper
Citation201
0
Save
0

Porous hydrogel-induced self-powered gas-solid triboelectric dressing for promoting wound healing

Rongchen Xu et al.Jun 25, 2024
Exogenous electrical stimulation (ES) can significantly enhance the wound healing acceleration. However, most power-generating devices and materials are limited due to structural complexity, external power dependence, and low bio-safety. Here, we design and synthesize a porous hydrogel with gas-solid contact-separation triboelectricity (GSHL). It exhibits excellent physicochemical properties and bio-safety. Also, its inner pores provide a gas-solid interface, which generates a stable self-powered triboelectric potential difference due to the deformation of the interior pores when pressed by the motion of hosts. This exogenous triboelectric stimulation can enhance the proliferation, migration, and adhesion of keratinocytes. In vivo experiments show that GSHL can generate ES at wound bed in situ through the moving of rats, accelerate re-epithelization, and enhance collagen deposition, thereby enhancing the healing of skin wounds. Compared to traditional methods that depend on an external power source to achieve ES for wound healing, this study introduces a novel triboelectric method that is self-powered solely through the intrinsic movement of the organism without any external electrical input.
Load More