SP
Sinno Pan
Author with expertise in Advances in Transfer Learning and Domain Adaptation
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(40% Open Access)
Cited by:
28,986
h-index:
48
/
i10-index:
103
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Domain Adaptation via Transfer Component Analysis

Sinno Pan et al.Nov 23, 2010
Domain adaptation allows knowledge from a source domain to be transferred to a different but related target domain. Intuitively, discovering a good feature representation across domains is crucial. In this paper, we first propose to find such a representation through a new learning method, transfer component analysis (TCA), for domain adaptation. TCA tries to learn some transfer components across domains in a reproducing kernel Hilbert space using maximum mean miscrepancy. In the subspace spanned by these transfer components, data properties are preserved and data distributions in different domains are close to each other. As a result, with the new representations in this subspace, we can apply standard machine learning methods to train classifiers or regression models in the source domain for use in the target domain. Furthermore, in order to uncover the knowledge hidden in the relations between the data labels from the source and target domains, we extend TCA in a semisupervised learning setting, which encodes label information into transfer components learning. We call this extension semisupervised TCA. The main contribution of our work is that we propose a novel dimensionality reduction framework for reducing the distance between domains in a latent space for domain adaptation. We propose both unsupervised and semisupervised feature extraction approaches, which can dramatically reduce the distance between domain distributions by projecting data onto the learned transfer components. Finally, our approach can handle large datasets and naturally lead to out-of-sample generalization. The effectiveness and efficiency of our approach are verified by experiments on five toy datasets and two real-world applications: cross-domain indoor WiFi localization and cross-domain text classification.
0

Cross-domain sentiment classification via spectral feature alignment

Sinno Pan et al.Apr 26, 2010
Sentiment classification aims to automatically predict sentiment polarity (e.g., positive or negative) of users publishing sentiment data (e.g., reviews, blogs). Although traditional classification algorithms can be used to train sentiment classifiers from manually labeled text data, the labeling work can be time-consuming and expensive. Meanwhile, users often use some different words when they express sentiment in different domains. If we directly apply a classifier trained in one domain to other domains, the performance will be very low due to the differences between these domains. In this work, we develop a general solution to sentiment classification when we do not have any labels in a target domain but have some labeled data in a different domain, regarded as source domain. In this cross-domain sentiment classification setting, to bridge the gap between the domains, we propose a spectral feature alignment (SFA) algorithm to align domain-specific words from different domains into unified clusters, with the help of domain-independent words as a bridge. In this way, the clusters can be used to reduce the gap between domain-specific words of the two domains, which can be used to train sentiment classifiers in the target domain accurately. Compared to previous approaches, SFA can discover a robust representation for cross-domain data by fully exploiting the relationship between the domain-specific and domain-independent words via simultaneously co-clustering them in a common latent space. We perform extensive experiments on two real world datasets, and demonstrate that SFA significantly outperforms previous approaches to cross-domain sentiment classification.
0
Citation781
0
Save
0

Adaptation Regularization: A General Framework for Transfer Learning

Mingsheng Long et al.Jul 1, 2013
Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown promising value in knowledge discovery yet still been a challenging problem. Most previous works designed adaptive classifiers by exploring two learning strategies independently: distribution adaptation and label propagation. In this paper, we propose a novel transfer learning framework, referred to as Adaptation Regularization based Transfer Learning (ARTL), to model them in a unified way based on the structural risk minimization principle and the regularization theory. Specifically, ARTL learns the adaptive classifier by simultaneously optimizing the structural risk functional, the joint distribution matching between domains, and the manifold consistency underlying marginal distribution. Based on the framework, we propose two novel methods using Regularized Least Squares (RLS) and Support Vector Machines (SVMs), respectively, and use the Representer theorem in reproducing kernel Hilbert space to derive corresponding solutions. Comprehensive experiments verify that ARTL can significantly outperform state-of-the-art learning methods on several public text and image datasets.
0

Coupled Multi-Layer Attentions for Co-Extraction of Aspect and Opinion Terms

Wenya Wang et al.Feb 12, 2017
The task of aspect and opinion terms co-extraction aims to explicitly extract aspect terms describing features of an entity and opinion terms expressing emotions from user-generated texts. To achieve this task, one effective approach is to exploit relations between aspect terms and opinion terms by parsing syntactic structure for each sentence. However, this approach requires expensive effort for parsing and highly depends on the quality of the parsing results. In this paper, we offer a novel deep learning model, named coupled multi-layer attentions. The proposed model provides an end-to-end solution and does not require any parsers or other linguistic resources for preprocessing. Specifically, the proposed model is a multi-layer attention network, where each layer consists of a couple of attentions with tensor operators. One attention is for extracting aspect terms, while the other is for extracting opinion terms. They are learned interactively to dually propagate information between aspect terms and opinion terms. Through multiple layers, the model can further exploit indirect relations between terms for more precise information extraction. Experimental results on three benchmark datasets in SemEval Challenge 2014 and 2015 show that our model achieves state-of-the-art performances compared with several baselines.
0

Heterogeneous Transfer Learning for Image Classification

Yin Zhu et al.Aug 4, 2011
Transfer learning as a new machine learning paradigm has gained increasing attention lately. In situations where the training data in a target domain are not sufficient to learn predictive models effectively, transfer learning leverages auxiliary source data from other related source domains for learning. While most of the existing works in this area only focused on using the source data with the same structure as the target data, in this paper, we push this boundary further by proposing a heterogeneous transfer learning framework for knowledge transfer between text and images. We observe that for a target-domain classification problem, some annotated images can be found on many social Web sites, which can serve as a bridge to transfer knowledge from the abundant text documents available over the Web. A key question is how to effectively transfer the knowledge in the source data even though the text can be arbitrarily found. Our solution is to enrich the representation of the target images with semantic concepts extracted from the auxiliary source data through a novel matrix factorization method. By using the latent semantic features generated by the auxiliary data, we are able to build a better integrated image classifier. We empirically demonstrate the effectiveness of our algorithm on the Caltech-256 image dataset.
Load More