SC
Sz. Csizmadia
Author with expertise in Stellar Astrophysics and Exoplanet Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
1,217
h-index:
33
/
i10-index:
64
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transiting exoplanets from the CoRoT space mission

Alain Léger et al.Aug 11, 2009
Aims. We report the discovery of very shallow (), periodic dips in the light curve of an active G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion.Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion.Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40´´or triple systems are almost excluded with a risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 day and a radius of REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding.Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, 1800–2600 K at the substellar point, and a very low one, 50 K, on its dark face assuming no atmosphere, have been derived.
0
Paper
Citation530
0
Save
0

The PLATO 2.0 mission

H. Rauer et al.Sep 3, 2014
PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 sec readout cadence and 2 with 2.5 sec candence) providing a wide field-of-view (2232 deg2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2%, 4-10% and 10% for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50% of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0.
0

The Next Generation Transit Survey (NGTS)

P. Wheatley et al.Nov 3, 2017
We describe the Next Generation Transit Survey (NGTS), which is a ground-based project searching for transiting exoplanets orbiting bright stars. NGTS builds on the legacy of previous surveys, most notably WASP, and is designed to achieve higher photometric precision and hence find smaller planets than have previously been detected from the ground. It also operates in red light, maximizing sensitivity to late K and early M dwarf stars. The survey specifications call for photometric precision of 0.1 per cent in red light over an instantaneous field of view of 100 deg2, enabling the detection of Neptune-sized exoplanets around Sun-like stars and super-Earths around M dwarfs. The survey is carried out with a purpose-built facility at Cerro Paranal, Chile, which is the premier site of the European Southern Observatory (ESO). An array of twelve 20 cm f/2.8 telescopes fitted with back-illuminated deep-depletion CCD cameras is used to survey fields intensively at intermediate Galactic latitudes. The instrument is also ideally suited to ground-based photometric follow-up of exoplanet candidates from space telescopes such as TESS, Gaia and PLATO. We present observations that combine precise autoguiding and the superb observing conditions at Paranal to provide routine photometric precision of 0.1 per cent in 1 h for stars with I-band magnitudes brighter than 13. We describe the instrument and data analysis methods as well as the status of the survey, which achieved first light in 2015 and began full-survey operations in 2016. NGTS data will be made publicly available through the ESO archive.
0

CHEOPS in-flight performance. A comprehensive look at the first 3.5 years of operations

A. Fortier et al.Jun 4, 2024
Context . Since the discovery of the first exoplanet almost three decades ago, the number of known exoplanets has increased dramatically. By beginning of the 2000s it was clear that dedicated facilities to advance our studies in this field were needed. The CHaracterising ExOPlanet Satellite (CHEOPS) is a space telescope specifically designed to monitor transiting exoplanets orbiting bright stars. In September 2023, CHEOPS completed its nominal mission duration of 3.5 yr and remains in excellent operational conditions. As a testament to this, the mission has been extended until the end of 2026. Aims . Scientific and instrumental data have been collected throughout in-orbit commissioning and nominal operations, enabling a comprehensive analysis of the mission’s performance. In this article, we present the results of this analysis with a twofold goal. First, we aim to inform the scientific community about the present status of the mission and what can be expected as the instrument ages. Secondly, we intend for this publication to serve as a legacy document for future missions, providing insights and lessons learned from the successful operation of CHEOPS. Methods . To evaluate the instrument performance in flight, we developed a comprehensive monitoring and characterisation (M&C) programme. It consists of dedicated observations that allow us to characterise the instrument’s response and continuously monitor its behaviour. In addition to the standard collection of nominal science and housekeeping data, these observations provide valuable input for detecting, modelling, and correcting instrument systematics, discovering and addressing anomalies, and comparing the instrument’s actual performance with expectations. Results . The precision of the CHEOPS measurements has enabled the mission objectives to be met and exceeded. The satellite’s performance remains stable and reliable, ensuring accurate data collection throughout its operational life. Careful modelling of the instrumental systematics allows the data quality to be significantly improved during the light curve analysis phase, resulting in more precise scientific measurements. Conclusions . CHEOPS is compliant with the driving scientific requirements of the mission. Although visible, the ageing of the instrument has not affected the mission’s performance. The satellite’s capabilities remain robust, and we are confident that we will continue to acquire high-quality data during the mission extension.
0

Searching for GEMS: TOI-6383Ab, a Giant Planet Transiting an M3-dwarf Star in a Binary System*

Lia Bernabò et al.Nov 18, 2024
Abstract We report on the discovery of a transiting giant planet around the 3500 K M3-dwarf star TOI-6383A located 172 pc from Earth. It was detected by the Transiting Exoplanet Survey Satellite and confirmed by a combination of ground-based follow-up photometry and precise radial velocity measurements. This planet has an orbital period of ∼1.791 days, a mass of 1.040 ± 0.094 M J , and a radius of 1.008 − 0.033 + 0.036  R J , resulting in a mean bulk density of 1.26 − 0.17 + 0.18 g cm −3 . TOI-6383A has an M dwarf companion star, TOI-6383B, which has a stellar effective temperature of T eff ∼ 3100 K and a projected orbital separation of 3126 au. TOI-6383A is a low-mass dwarf star hosting a giant planet and is an intriguing object for planetary evolution studies due to its high planet-to-star mass ratio. This discovery is part of the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) Survey, intending to provide robust and accurate estimates of the occurrence of GEMS and the statistics on their physical and orbital parameters. This paper presents an interesting addition to the small number of confirmed GEMS, particularly notable since its formation necessitates massive, dust-rich protoplanetary discs and high accretion efficiency (>10%).
0

Architecture of TOI-561 planetary system

G. Piotto et al.Nov 15, 2024
ABSTRACT We present new observations from CHEOPS (CHaracterising ExOPlanet Satellite) and TESS (Transiting Exoplanet Survey Satellite) to clarify the architecture of the planetary system hosted by the old Galactic thick disc star TOI-561. Our global analysis, which also includes previously published photometric and radial velocity data, incontrovertibly proves that TOI-561 is hosting at least four transiting planets with periods of 0.44 d (TOI-561 b), 10.8 d (TOI-561 c), 25.7 d (TOI-561 d), and 77.1 d (TOI-561 e) and a fifth non-transiting candidate, TOI-561f with a period of 433 d. The precise characterization of TOI-561’s orbital architecture is interesting since old and metal-poor thick disc stars are less likely to host ultrashort-period super-Earths like TOI-561 b. The new period of planet -e is consistent with the value obtained using radial velocity alone and is now known to be $77.14399\pm 0.00025$ d, thanks to the new CHEOPS and TESS transits. The new data allowed us to improve its radius ($R_p = 2.517 \pm 0.045\,\mathrm{ R}_{\rm{\oplus }}$ from 5 per cent to 2 per cent precision) and mass ($M_p = 12.4 \pm 1.4\, \mathrm{ M}_{\rm{\oplus }}$) estimates, implying a density of $\rho _p = 0.778 \pm 0.097\, \rho _{\rm{\oplus }}$. Thanks to recent TESS observations and the focused CHEOPS visit of the transit of TOI-561 e, a good candidate for exomoon searches, the planet’s period is finally constrained, allowing us to predict transit times through 2030 with 20-min accuracy. We present an updated version of the internal structure of the four transiting planets. We finally performed a detailed stability analysis, which confirmed the long-term stability of the outer planet TOI-561 f.
0

HR 10 as seen by CHEOPS and TESS. Revealing delta Scuti pulsations, granulation-like signal and hint for transients

Sébastien Salmon et al.Jun 17, 2024
HR 10 has only recently been identified as a binary system. Previously thought to be an A-type shell star, it appears that both components are fast-rotating A-type stars, each presenting a circumstellar envelope. Although showing complex photometric variability, spectroscopic observations of the metallic absorption lines reveal variation explained by the binarity, but not indicative of debris-disc inhomogeneities or sublimating exocomets. On the other hand, the properties of the two stars make them potential delta Scuti pulsators. The system has been observed in two sectors by the TESS satellite, and was the target of three observing visits by CHEOPS. Thanks to these new data, we aim to further characterise the stellar properties of the two components. In particular, we aim to decipher the extent to to which the photometric variability can be attributed to a stellar origin. In complement, we searched in the lightcurves for transient-type events that could reveal debris discs or exocomets. We analysed the photometric variability of both the TESS and CHEOPS datasets in detail. We first performed a frequency analysis to identify and list all the periodic signals that may be related to stellar oscillations or surface variability. The signals identified as resulting from the stellar variability were then removed from the lightcurves inorder to search for transient events in the residuals. We report the detection of delta Scuti pulsations in both the TESS and CHEOPS data, but we cannot definitively identify which of the components is the pulsating star. In both datasets, we find flicker noise with the characteristics of a stellar granulation signal. However, it remains difficult to firmly attribute it to actual stellar granulation from convection, given the very thin surface convective zones predicted for both stars. Finally, we report probable detection of transient events in the CHEOPS data, without clear evidence of their origin.
0

A possible misaligned orbit for the young planet AU Mic c

Haochuan Yu et al.Nov 26, 2024
ABSTRACT The AU Microscopii planetary system is only 24 Myr old, and its geometry may provide clues about the early dynamical history of planetary systems. Here, we present the first measurement of the Rossiter–McLaughlin effect for the warm sub-Neptune AU Mic c, using two transits observed simultaneously with the European Southern Observatory's (ESO's) Very Large Telescope (VLT)/Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO), CHaracterising ExOPlanet Satellite (CHEOPS), and Next-Generation Transit Survey (NGTS). After correcting for flares and for the magnetic activity of the host star, and accounting for transit-timing variations, we find the sky-projected spin–orbit angle of planet c to be in the range $\lambda _{\mathrm{c}}=67.8_{-49.0}^{+31.7}$ degrees (1$\sigma$). We examine the possibility that planet c is misaligned with respect to the orbit of the inner planet b ($\lambda _{\mathrm{b}}=-2.96_{-10.30}^{+10.44}$), and the equatorial plane of the host star, and discuss scenarios that could explain both this and the planet’s high density, including secular interactions with other bodies in the system or a giant impact. We note that a significantly misaligned orbit for planet c is in some degree of tension with the dynamical stability of the system, and with the fact that we see both planets in transit, though these arguments alone do not preclude such an orbit. Further observations would be highly desirable to constrain the spin–orbit angle of planet c more precisely.