MH
Mengqiu Huang
Author with expertise in Metamaterials and Negative Refraction
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
882
h-index:
22
/
i10-index:
35
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multidimension‐Controllable Synthesis of MOF‐Derived Co@N‐Doped Carbon Composite with Magnetic‐Dielectric Synergy toward Strong Microwave Absorption

Mengqiu Huang et al.Mar 17, 2020
Abstract Metal–organic framework (MOF) is highly desirable as a functional material owing to its low density, tunable pore size, and diversity of coordination formation, but limited by the poor dielectric properties. Herein, by controlling the solvent and mole ratio of cobalt/linker, multidimension‐controllable MOF‐derived nitrogen‐doped carbon materials exhibit tunable morphology from sheet‐, flower‐, cube‐, dodecahedron‐ to octahedron‐like. Tunable electromagnetic parameters of Co@N‐doped carbon composites (Co@NC) can be obtained and the initial MOF precursor determines the distribution of carbon framework and magnetic cobalt nanoparticles. Carbonized Co@NC composites possess the following advantages: i) controllable dimension and morphology to balance the electromagnetic properties with evenly charged density distribution; ii) magnetic‐carbon composites offer plenty of interfacial polarization and strong magnetic coupling network; iii) a MOF‐derived dielectric carbon skeleton provides electronic transportation paths and enhances conductive dissipation. Surface‐mediated magnetic coupling reflects the stray magnetic flux field, which is corroborated by the off‐axis electron holography and micro‐magnetic simulation. Optimized octadecahedral Co@NC sample exhibits the best microwave absorption (MA) of −53.0 dB at the thickness of 1.8 mm and broad effective frequency from 11.4 to 17.6 GHz (Ku‐band). These results pave the way to fabricate high‐performance MA materials with balanced electromagnetic distribution and controlled morphology.
0

MOF-Derived Ni1−xCox@Carbon with Tunable Nano–Microstructure as Lightweight and Highly Efficient Electromagnetic Wave Absorber

Lei Wang et al.Jul 15, 2020
Abstract Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni 1− x Co x @Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp 2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni 1− x Co x @Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value − 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic–dielectric synergy effect of MOF-derived Ni 1− x Co x @Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.
0

One-Dimensional Magnetic FeCoNi Alloy Toward Low-Frequency Electromagnetic Wave Absorption

Bintong Yang et al.Aug 20, 2022
Rational designing of one-dimensional (1D) magnetic alloy to facilitate electromagnetic (EM) wave attenuation capability in low-frequency (2-6 GHz) microwave absorption field is highly desired but remains a significant challenge. In this study, a composite EM wave absorber made of a FeCoNi medium-entropy alloy embedded in a 1D carbon matrix framework is rationally designed through an improved electrospinning method. The 1D-shaped FeCoNi alloy embedded composite demonstrates the high-density and continuous magnetic network using off-axis electronic holography technique, indicating the excellent magnetic loss ability under an external EM field. Then, the in-depth analysis shows that many factors, including 1D anisotropy and intrinsic physical features of the magnetic medium-entropy alloy, primarily contribute to the enhanced EM wave absorption performance. Therefore, the fabricated EM wave absorber shows an increasing effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm. Thus, this study opens up a new method for the design and preparation of high-performance 1D magnetic EM absorbers.
0

MOFs-Derived Strategy and Ternary Alloys Regulation in Flower-Like Magnetic-Carbon Microspheres with Broadband Electromagnetic Wave Absorption

Mengqiu Huang et al.Jul 12, 2024
Abstract Broadband electromagnetic (EM) wave absorption materials play an important role in military stealth and health protection. Herein, metal–organic frameworks (MOFs)-derived magnetic-carbon CoNiM@C (M = Cu, Zn, Fe, Mn) microspheres are fabricated, which exhibit flower-like nano–microstructure with tunable EM response capacity. Based on the MOFs-derived CoNi@C microsphere, the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance. In term of broadband absorption, the order of efficient absorption bandwidth (EAB) value is Mn > Fe = Zn > Cu in the CoNiM@C microspheres. Therefore, MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz (covering 12.2–18 GHz at 2.0 mm thickness). Besides, off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss. Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region, forming interfacial polarization. The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path, boosting the conductive loss. Equally importantly, magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors. This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy.