TC
Ting Cao
Author with expertise in Two-Dimensional Materials
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
23
(87% Open Access)
Cited by:
12,367
h-index:
44
/
i10-index:
76
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Probing excitonic dark states in single-layer tungsten disulphide

Ziliang Ye et al.Aug 26, 2014
A series of long-lived excitons in a monolayer of tungsten disulphide are found to have strong binding energy and an energy dependence on orbital momentum that significantly deviates from conventional, three-dimensional, behaviour. The emergence of graphene optoelectronics has stimulated the development of near-transparent two-dimensional semiconductor materials. Much attention is focusing on the potentially extremely versatile transition metal dichalcogenides, such as molybdenum disulphide and tungsten disulphide, as components for ultrathin electronic devices. The physical origins of the unusually strong light–matter interactions in these materials remain unclear. An active topic in this area is how excitons (electron-hole pairs generated by light) behave in these low-dimensional systems. Here Xiang Zhang and colleagues report the discovery of a series of two-dimensional excitonic dark states in monolayer tungsten disulphide that have strong binding energy and an energy dependence on orbital momentum that significantly deviates from conventional (3D) behaviour. The findings open new avenues for fundamental research and opportunities to design devices such as photodetectors and photovoltaic cells. Transition metal dichalcogenide (TMDC) monolayers have recently emerged as an important class of two-dimensional semiconductors with potential for electronic and optoelectronic devices1,2. Unlike semi-metallic graphene, layered TMDCs have a sizeable bandgap3. More interestingly, when thinned down to a monolayer, TMDCs transform from indirect-bandgap to direct-bandgap semiconductors4,5, exhibiting a number of intriguing optical phenomena such as valley-selective circular dichroism6,7,8, doping-dependent charged excitons9,10 and strong photocurrent responses11. However, the fundamental mechanism underlying such a strong light–matter interaction is still under intensive investigation. First-principles calculations have predicted a quasiparticle bandgap much larger than the measured optical gap, and an optical response dominated by excitonic effects12,13,14. In particular, a recent study based on a GW plus Bethe–Salpeter equation (GW-BSE) approach, which employed many-body Green’s-function methodology to address electron–electron and electron–hole interactions, theoretically predicted a diversity of strongly bound excitons14. Here we report experimental evidence of a series of excitonic dark states in single-layer WS2 using two-photon excitation spectroscopy. In combination with GW-BSE theory, we prove that the excitons are of Wannier type, meaning that each exciton wavefunction extends over multiple unit cells, but with extraordinarily large binding energy (∼0.7 electronvolts), leading to a quasiparticle bandgap of 2.7 electronvolts. These strongly bound exciton states are observed to be stable even at room temperature. We reveal an exciton series that deviates substantially from hydrogen models, with a novel energy dependence on the orbital angular momentum. These excitonic energy levels are experimentally found to be robust against environmental perturbations. The discovery of excitonic dark states and exceptionally large binding energy not only sheds light on the importance of many-electron effects in this two-dimensional gapped system, but also holds potential for the device application of TMDC monolayers and their heterostructures15 in computing, communication and bio-sensing.
0

Topological band engineering of graphene nanoribbons

Daniel Rizzo et al.Aug 1, 2018
Topological insulators (TIs) are an emerging class of materials that host highly robust in-gap surface/interface states while maintaining an insulating bulk. While most notable scientific advancements in this field have been focused on TIs and related topological crystalline insulators in 2D and 3D, more recent theoretical work has predicted the existence of 1D symmetry-protected topological phases in graphene nanoribbons (GNRs). The topological phase of these laterally-confined, semiconducting strips of graphene is determined by their width, edge shape, and the terminating unit cell, and is characterized by a Z2 invariant (similar to 1D solitonic systems). Interfaces between topologically distinct GNRs characterized by different Z2 are predicted to support half-filled in-gap localized electronic states which can, in principle, be utilized as a tool for material engineering. Here we present the rational design and experimental realization of a topologically-engineered GNR superlattice that hosts a 1D array of such states, thus generating otherwise inaccessible electronic structure. This strategy also enables new end states to be engineered directly into the termini of the 1D GNR superlattice. Atomically-precise topological GNR superlattices were synthesized from molecular precursors on a Au(111) surface under ultra-high vacuum (UHV) conditions and characterized by low temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Our experimental results and first-principles calculations reveal that the frontier band structure of these GNR superlattices is defined purely by the coupling between adjacent topological interface states. This novel manifestation of 1D topological phases presents an entirely new route to band engineering in 1D materials based on precise control of their electronic topology, and is a promising platform for future studies of 1D quantum spin physics.
0

Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions

Yen-Chia Chen et al.Jan 9, 2015
Width-modulated heterostructures are created in graphene nanoribbons using a bottom-up approach, thus achieving molecular-scale bandgap engineering. Bandgap engineering is used to create semiconductor heterostructure devices that perform processes such as resonant tunnelling1,2 and solar energy conversion3,4. However, the performance of such devices degrades as their size is reduced5,6. Graphene-based molecular electronics has emerged as a candidate to enable high performance down to the single-molecule scale7,8,9,10,11,12,13,14,15,16,17. Graphene nanoribbons, for example, can have widths of less than 2 nm and bandgaps that are tunable via their width and symmetry6,18,19. It has been predicted that bandgap engineering within a single graphene nanoribbon may be achieved by varying the width of covalently bonded segments within the nanoribbon20,21,22. Here, we demonstrate the bottom-up synthesis of such width-modulated armchair graphene nanoribbon heterostructures, obtained by fusing segments made from two different molecular building blocks. We study these heterojunctions at subnanometre length scales with scanning tunnelling microscopy and spectroscopy, and identify their spatially modulated electronic structure, demonstrating molecular-scale bandgap engineering, including type I heterojunction behaviour. First-principles calculations support these findings and provide insight into the microscopic electronic structure of bandgap-engineered graphene nanoribbon heterojunctions.
0

Switching 2D magnetic states via pressure tuning of layer stacking

Tiancheng Song et al.Oct 28, 2019
The physical properties of two-dimensional van der Waals crystals can be sensitive to interlayer coupling. For two-dimensional magnets1–3, theory suggests that interlayer exchange coupling is strongly dependent on layer separation while the stacking arrangement can even change the sign of the interlayer magnetic exchange, thus drastically modifying the ground state4–10. Here, we demonstrate pressure tuning of magnetic order in the two-dimensional magnet CrI3. We probe the magnetic states using tunnelling8,11–13 and scanning magnetic circular dichroism microscopy measurements2. We find that interlayer magnetic coupling can be more than doubled by hydrostatic pressure. In bilayer CrI3, pressure induces a transition from layered antiferromagnetic to ferromagnetic phase. In trilayer CrI3, pressure can create coexisting domains of three phases, one ferromagnetic and two antiferromagnetic. The observed changes in magnetic order can be explained by changes in the stacking arrangement. Such coupling between stacking order and magnetism provides ample opportunities for designer magnetic phases and functionalities. Pressure-induced changes in the magnetic order of bilayer and trilayer van der Waals crystals are revealed and attributed to changes in the stacking arrangement.
0

Strong Second-Harmonic Generation in Atomic Layered GaSe

Xu Zhou et al.Jun 10, 2015
Nonlinear effects in two-dimensional (2D) atomic layered materials have recently attracted increasing interest. Phenomena such as nonlinear optical edge response, chiral electroluminescence, and valley and spin currents beyond linear orders have opened up a great opportunity to expand the functionalities and potential applications of 2D materials. Here we report the first observation of strong optical second-harmonic generation (SHG) in monolayer GaSe under nonresonant excitation and emission condition. Our experiments show that the nonresonant SHG intensity of GaSe is the strongest among all the 2D atomic crystals measured up to day. At the excitation wavelength of 1600 nm, the SHG signal from monolayer GaSe is around 1-2 orders of magnitude larger than that from monolayer MoS2 under the same excitation power. Such a strong nonlinear signal facilitates the use of polarization-dependent SHG intensity and SHG mapping to investigate the symmetry properties of this material: the monolayer GaSe shows 3-fold lattice symmetry with an intrinsic correspondence to its geometric triangular shape in our growth condition; whereas the bilayer GaSe exhibits two dominant stacking orders: AA and AB stacking. The correlation between the stacking orders and the interlayer twist angles in GaSe bilayer indicates that different triangular GaSe atomic layers have the same dominant edge configuration. Our results provide a route toward exploring the structural information and the possibility to observe other nonlinear effects in GaSe atomic layers.
Load More