WL
Wei Li
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
27
(19% Open Access)
Cited by:
8,183
h-index:
101
/
i10-index:
714
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Ordered Mesoporous Black TiO2 as Highly Efficient Hydrogen Evolution Photocatalyst

Wei Zhou et al.Jun 17, 2014
Mesoporous TiO2 has gained increasing interest because of its outstanding properties and promising applications in a wide range of fields. Herein, we report the facile synthesis of ordered mesoporous black TiO2 (OMBT) materials, which exhibit excellent photocatalytic hydrogen evolution performances. In this case, the employment of a thermally stable and high-surface-area mesoporous TiO2 as the hydrogenation precursor is the key for fabricating the OMBT materials, which not only facilitate H2 gas diffusion into TiO2 and interaction with their structures but also maintain the ordered mesoporous structures as well as inhibit the phase transformation (from anatase to rutile) and crystal growth during hydrogenation at 500 °C. The resultant OMBT materials possess a relatively high surface area of ∼124 m(2) g(-1) and a large pore size and pore volume of ∼9.6 nm and 0.24 cm(3) g(-1), respectively. More importantly, the OMBT materials can extend the photoresponse from ultraviolet to visible and infrared light regions and exhibit a high solar-driven hydrogen production rate (136.2 μmol h(-1)), which is almost two times as high as that of pristine mesoporous TiO2 (76.6 μmol h(-1)).
0

Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide

Donghui Long et al.Sep 23, 2010
Nitrogen-doped graphene sheets were prepared through a hydrothermal reduction of colloidal dispersions of graphite oxide in the presence of hydrazine and ammonia at pH of 10. The effect of hydrothermal temperature on the structure, morphology, and surface chemistry of as-prepared graphene sheets were investigated though XRD, N(2) adsorption, solid-state (13)C NMR, SEM, TEM, and XPS characterizations. Oxygen reduction and nitrogen doping were achieved simultaneously under the hydrothermal reaction. Up to 5% nitrogen-doped graphene sheets with slightly wrinkled and folded feature were obtained at the relative low hydrothermal temperature. With the increase of hydrothermal temperature, the nitrogen content decreased slightly and more pyridinic N incorporated into the graphene network. Meanwhile, a jellyfish-like graphene structure was formed by self-organization of graphene sheets at the hydrothermal temperature of 160 °C. Further increase of the temperature to 200 °C, graphene sheets could self-aggregate into agglomerate particles but still contained doping level of 4 wt % N. The unique hydrothermal environment should play an important role in the nitrogen doping and the jellyfish-like graphene formation. This simple hydrothermal method could provide the synthesis of nitrogen-doped graphene sheets in large scale for various practical applications.
0

Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres

Dengke Shen et al.Jan 27, 2014
A kind of novel uniform monodispersed three-dimensional dendritic mesoporous silica nanospheres (3D-dendritic MSNSs) has been successfully synthesized for the first time. The 3D-dendritic MSNSs can have hierarchical mesostructure with multigenerational, tunable center-radial, and dendritic mesopore channels. The synthesis was carried out in the heterogeneous oil-water biphase stratification reaction system, which allowed the self-assembly of reactants taking place in the oil-water interface for one-pot continuous interfacial growth. The average pore size of each generation for the 3D-dendritic MSNSs can be adjusted from 2.8 to 13 nm independently, which can be controlled by the varied hydrophobic solvents and concentration of silica source in the upper oil phase. The thickness of each generation can be tuned from ∼ 5 to 180 nm as desired, which can be controlled by the reaction time and amount of silica source. The biphase stratification approach can also be used to prepare other core-shell and functional mesoporous materials such as Au nanoparticle@3D-dendritic MSNS and Ag nanocube@3D-dendritic MSNS composites. The 3D-dendritic MSNSs show their unique advantage for protein loading and releasing due to their tunable large pore sizes and smart hierarchical mesostructures. The maximum loading capacity of bovine β-lactoglobulin with 3D-dendritic MSNSs can reach as high as 62.1 wt % due to their large pore volume, and the simulated protein releasing process can be tuned from 24 to 96 h by flexible mesostructures. More importantly, the releasing rates are partly dependent on the hierarchical biodegradation, because the 3D-dendritic MSNSs with larger pore sizes have faster simulated biodegradation rates in simulated body fluid. The most rapid simulated biodegradation can be finished entirely in 24 h, which has been greatly shortened than two weeks for the mesoporous silica reported previously. As the inorganic mesoporous materials, 3D-dendritic MSNSs show excellent biocompatibility, and it would have a hopeful prospect in the clinical applications.
0

Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes

Hao Liu et al.Sep 28, 2015
Rational design and controllable synthesis of TiO2 based materials with unique microstructure, high reactivity, and excellent electrochemical performance for lithium ion batteries are crucially desired. In this paper, we developed a versatile route to synthesize hollow TiO2/graphitic carbon (H-TiO2/GC) spheres with superior electrochemical performance. The as-prepared mesoporous H-TiO2/GC hollow spheres present a high specific surface area (298 m2 g–1), a high pore volume (0.31 cm3 g–1), a large pore size (∼5 nm), well-defined hollow structure (monodispersed size of 600 nm and inner diameter of ∼400 nm, shell thickness of 100 nm), and small nanocrystals of anatase TiO2 (∼8 nm) conformably encapsulated in ultrathin graphitic carbon layers. As a result, the H-TiO2/GC hollow spheres achieve excellent electrochemical reactivity and stability as an anode material for lithium ion batteries. A high specific capacity of 137 mAh g–1 can be achieved up to 1000 cycles at a current density of 1 A g–1 (5 C). We believe that the mesoporous H-TiO2/GC hollow spheres are expected to be applied as a high-performance electrode material for next generation lithium ion batteries.
0

Synthesis of Particulate Hierarchical Tandem Heterojunctions toward Optimized Photocatalytic Hydrogen Production

Bojing Sun et al.Sep 10, 2018
Abstract Photocatalytic hydrogen production using semiconductors is identified as one of the most promising routes for sustainable energy; however, it is challenging to harvest the full solar spectrum in a particulate photocatalyst for high activity. Herein, a hierarchical hollow black TiO 2 /MoS 2 /CdS tandem heterojunction photocatalyst, which allows broad‐spectrum absorption, thus delivering enhanced hydrogen evolution performance is designed and synthesized. The MoS 2 nanosheets not only function as a cost‐effective cocatalyst but also act as a bridge to connect two light‐harvesting semiconductors into a tandem heterojunction where the CdS nanoparticles and black TiO 2 spheres absorb UV and visible light on both sides efficiently, coupling with the MoS 2 cocatalyst into a particulate photocatalyst system. Consequently, the photocatalytic hydrogen rate of the black TiO 2 /MoS 2 /CdS tandem heterojunction is as high as 179 µmol h −1 per 20 mg photocatalyst under visible‐light irradiation, which is almost 3 times higher than that of black TiO 2 /MoS 2 heterojunctions (57.2 µmol h −1 ). Most importantly, the stability of CdS nanoparticles in the black TiO 2 /MoS 2 /CdS tandem heterojunction is greatly improved compared to MoS 2 /CdS because of the formation of tandem heterojunctions and the strong UV‐absorbing effect of black TiO 2 . Such a tandem architectural design provides new ways for synthesizing particulate photocatalysts with high efficiencies.
Load More