LW
Liming Wang
Author with expertise in Nanotechnology and Imaging for Cancer Therapy and Diagnosis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
26
(27% Open Access)
Cited by:
6,106
h-index:
69
/
i10-index:
224
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Binding of blood proteins to carbon nanotubes reduces cytotoxicity

Cuicui Ge et al.Oct 3, 2011
With the potential wide uses of nanoparticles such as carbon nanotubes in biomedical applications, and the growing concerns of nanotoxicity of these engineered nanoparticles, the importance of nanoparticle-protein interactions cannot be stressed enough. In this study, we use both experimental and theoretical approaches, including atomic force microscope images, fluorescence spectroscopy, CD, SDS-PAGE, and molecular dynamics simulations, to investigate the interactions of single-wall carbon nanotubes (SWCNTs) with human serum proteins, and find a competitive binding of these proteins with different adsorption capacity and packing modes. The π-π stacking interactions between SWCNTs and aromatic residues (Trp, Phe, Tyr) are found to play a critical role in determining their adsorption capacity. Additional cellular cytotoxicity assays, with human acute monocytic leukemia cell line and human umbilical vein endothelial cells, reveal that the competitive bindings of blood proteins on the SWCNT surface can greatly alter their cellular interaction pathways and result in much reduced cytotoxicity for these protein-coated SWCNTs, according to their respective adsorption capacity. These findings have shed light toward the design of safe carbon nanotube nanomaterials by comprehensive preconsideration of their interactions with human serum proteins.
0

Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods

Yang Qiu et al.Jul 25, 2010
Gold nanorods (Au NRs) have been recognized as promising materials for biomedical applications, like sensing, imaging, gene and drug delivery and therapy, but their toxicological issues are still controversial, especially for the Au NRs synthesized with seed-mediated method. In this study, we investigated the influence of aspect ratio and surface coating on their toxicity and cellular uptake. The cellular uptake is highly dependent on the aspect ratio and surface coating. However, the surface chemistry has the dominant roles since PDDAC-coated Au NRs exhibit a much greater ability to be internalized by the cells. The present data demonstrated shape-independent but coating-dependent cytotoxicity. Both the CTAB molecules left in the suspended solution and on the surface of Au NRs were identified as the actual cause of cytotoxicity. CTAB can enter cells with or without Au NRs, damage mitochondria, and then induce apoptosis. The effects of surface coating upon toxicity and cellular uptake were also examined using Au NRs with different coatings. When Au NRs were added into the medium, the proteins were quickly adsorbed onto the Au NRs that made the surface negatively charged. The surface charge may not directly affect the cellular uptake. We further demonstrated that the amount of serum proteins, especially for BSA, adsorbed on the Au NRs had a positive correlation with the capacity of Au NRs to enter cells. In addition, we have successfully revealed that the cationic PDDAC-coated Au NRs with an aspect ratio of 4 possess an ideal combination of both negligible toxicity and high cellular uptake efficiency, showing a great promise as photothermal therapeutic agents.
0

Glycoproteomics Analysis of Human Liver Tissue by Combination of Multiple Enzyme Digestion and Hydrazide Chemistry

Rui Chen et al.Jan 21, 2009
The study of protein glycosylation has lagged far behind the progress of current proteomics because of the enormous complexity, wide dynamic range distribution and low stoichiometric modification of glycoprotein. Solid phase extraction of tryptic N-glycopeptides by hydrazide chemistry is becoming a popular protocol for the analysis of N-glycoproteome. However, in silico digestion of proteins in human proteome database by trypsin indicates that a significant percentage of tryptic N-glycopeptides is not in the preferred detection mass range of shotgun proteomics approach, that is, from 800 to 3500 Da. And the quite big size of glycan groups may block trypsin to access the K, R residues near N-glycosites for digestion, which will result in generation of big glycopeptides. Thus many N-glycosites could not be localized if only trypsin was used to digest proteins. Herein, we describe a comprehensive way to analyze the N-glycoproteome of human liver tissue by combination of hydrazide chemistry method and multiple enzyme digestion. The lysate of human liver tissue was digested with three proteases, that is, trypsin, pepsin and thermolysin, with different specificities, separately. Use of trypsin alone resulted in identification of 622 N-glycosites, while using pepsin and thermolysin resulted in identification of 317 additional N-glycosites. Among the 317 additional N-glycosites, 98 (30.9%) could not be identified by trypsin in theory because the corresponding in silico tryptic peptides are either too small or too big to detect in mass spectrometer. This study clearly demonstrated that the coverage of N-glycosites could be significantly increased due to the adoption of multiple enzyme digestion. A total number of 939 N-glycosites were identified confidently, covering 523 noredundant glycoproteins from human liver tissue, which leads to the establishment of the largest data set of glycoproteome from human liver up to now.
0

Surface-Engineered Gold Nanorods: Promising DNA Vaccine Adjuvant for HIV-1 Treatment

Ligeng Xu et al.Feb 28, 2012
With the intense international response to the AIDS pandemic, HIV vaccines have been extensively investigated but have failed due to issues of safety or efficacy in humans. Adjuvants for HIV/AIDS vaccines are under intense research but a rational design approach is still lacking. Nanomaterials represent an obvious opportunity in this field due to their unique physicochemical properties. Gold nanostructures are being actively studied as a promising and versatile platform for biomedical application. Herein, we report novel surface-engineered gold nanorods (NRs) used as promising DNA vaccine adjuvant for HIV treatment. We have exploited the effects of surface chemistry on the adjuvant activity of the gold nanorod by placing three kinds of molecules, that is, cetyltrimethylammonium bromide (CTAB), poly(diallydimethylammonium chloride) (PDDAC), and polyethyleneimine (PEI) on the surface of the nanorod. These PDDAC- or PEI-modified Au NRs can significantly promote cellular and humoral immunity as well as T cell proliferation through activating antigen-presenting cells if compared to naked HIV-1 Env plasmid DNA treatment in vivo. These findings have shed light on the rational design of low-toxic nanomaterials as a versatile platform for vaccine nanoadjuvants/delivery systems.
0

Revealing the Binding Structure of the Protein Corona on Gold Nanorods Using Synchrotron Radiation-Based Techniques: Understanding the Reduced Damage in Cell Membranes

Liming Wang et al.Nov 12, 2013
Regarding the importance of the biological effects of nanomaterials, there is still limited knowledge about the binding structure and stability of the protein corona on nanomaterials and the subsequent impacts. Here we designed a hard serum albumin protein corona (BSA) on CTAB-coated gold nanorods (AuNRs) and captured the structure of protein adsorption using synchrotron radiation X-ray absorption spectroscopy, microbeam X-ray fluorescent spectroscopy, and circular dichroism in combination with molecular dynamics simulations. The protein adsorption is attributed to at least 12 Au–S bonds and the stable corona reduced the cytotoxicity of CTAB/AuNRs. These combined strategies using physical, chemical, and biological approaches will improve our understanding of the protective effects of protein coronas against the toxicity of nanomaterials. These findings have shed light on a new strategy for studying interactions between proteins and nanomaterials, and this information will help further guide the rational design of nanomaterials for safe and effective biomedical applications.
0
Citation266
0
Save
0

Controlling Assembly of Paired Gold Clusters within Apoferritin Nanoreactor for in Vivo Kidney Targeting and Biomedical Imaging

Cuiji Sun et al.May 4, 2011
Functional nanostructures with high biocompatibility and stability, low toxicity, and specificity of targeting to desired organs or cells are of great interest in nanobiology and medicine. However, the challenge is to integrate all of these desired features into a single nanobiostructure, which can be applied to biomedical applications and eventually in clinical settings. In this context, we designed a strategy to assemble two gold nanoclusters at the ferroxidase active sites of ferritin heavy chain. Our studies showed that the resulting nanostructures (Au-Ft) retain not only the intrinsic fluorescence properties of noble metal, but gain enhanced intensity, show a red-shift, and exhibit tunable emissions due to the coupling interaction between the paired Au clusters. Furthermore, Au-Ft possessed the well-defined nanostructure of native ferritin, showed organ-specific targeting ability, high biocompatibility, and low cytotoxicity. The current study demonstrates that an integrated multimodal assembly strategy is able to generate stable and effective biomolecule-noble metal complexes of controllable size and with desirable fluorescence emission characteristics. Such agents are ideal for targeted in vitro and in vivo imaging. These results thus open new opportunities for biomolecule-guided nanostructure assembly with great potential for biomedical applications.
0

Use of Synchrotron Radiation-Analytical Techniques To Reveal Chemical Origin of Silver-Nanoparticle Cytotoxicity

Liming Wang et al.May 21, 2015
To predict potential medical value or toxicity of nanoparticles (NPs), it is necessary to understand the chemical transformation during intracellular processes of NPs. However, it is a grand challenge to capture a high-resolution image of metallic NPs in a single cell and the chemical information on intracellular NPs. Here, by integrating synchrotron radiation-beam transmission X-ray microscopy (SR-TXM) and SR-X-ray absorption near edge structure (SR-XANES) spectroscopy, we successfully capture the 3D distribution of silver NPs (AgNPs) inside a single human monocyte (THP-1), associated with the chemical transformation of silver. The results reveal that the cytotoxicity of AgNPs is largely due to the chemical transformation of particulate silver from elemental silver (Ag0)n, to Ag+ ions and Ag–O–, then Ag–S– species. These results provide direct evidence in the long-lasting debate on whether the nanoscale or the ionic form dominates the cytotoxicity of silver nanoparticles. Further, the present approach provides an integrated strategy capable of exploring the chemical origins of cytotoxicity in metallic nanoparticles.
Load More