We present a scheme to realize a controllable, scalable, low-cost, and versatile all-fiber orbital angular momentum (OAM) converter. The converter consists of a two-mode fiber (TMF) with its input terminal welded with a single-mode fiber, a mechanical long-period grating (LPG), a mechanical rotator, metal flat slabs, and a fiber polarization controller. The LPG is employed to convert the fundamental fiber mode to higher-order modes and the flat slabs are used to stress the TMF to adjust the relative phase difference between two orthogonal higher-order modes. Selective conversion from the LP01 mode to the LP11a, LP11b, OAM−1, or OAM+1 mode is demonstrated in the experiment.