An extremely conspicuous passive power noise stabilization is the first, to the best of our knowledge, discovered in a cavity-enhanced second-harmonic generation (SHG) process. Differing from the SHG as a buffer reservoir, the stronger strength of the nonlinear interaction pushes the power noise suppression level to a higher value and exhibits a broadband noise reduction performance due to the mechanism of dynamic pump suppression in the SHG process. The noise is suppressed to near shot noise limit (SNL) among the kHz to MHz frequency range, accompanied by a maximum noise reduction of 35 dB. A comprehensive demonstration indicates that the nonlinear interaction has no function on the phase noise of fundamental and harmonic waves. A theoretical model is also established that is consistent well with the experimental results. The methodology is beneficial to multiple optical metrology experiments.