HZ
Hongjian Zhou
Author with expertise in Science and Technology of Capacitive Deionization for Water Desalination
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(8% Open Access)
Cited by:
990
h-index:
36
/
i10-index:
71
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Efficient Synthesis of Furfuryl Alcohol from H2-Hydrogenation/Transfer Hydrogenation of Furfural Using Sulfonate Group Modified Cu Catalyst

Wanbing Gong et al.Jan 21, 2017
A copper-based catalyst, which was supported by sulfonate group (−SO3H) grafted active carbon (AC), was prepared and activated simultaneously by liquid phase chemical reduction method. The modified copper catalyst, Cu/AC–SO3H, displayed an enhanced catalytic performance for selective hydrogenation of furfural (FAL) to furfuryl alcohol (FOL) in liquid phase, in which almost 100% FOL yield was obtained at 378 K and 0.4 MPa of hydrogen pressure after 120 min reaction. The effect of −SO3H was evaluated and illustrated by the combination of reaction performance and physicochemical characterizations, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectrometer (XPS) measurements. Through grafting sulfonate group on the support, better dispersion of nanoparticles, higher reduction degree of Cu, and stronger adsorption of FAL can be attained to contribute high hydrogenation performance. In addition, the effects of reaction conditions (such as reaction temperature, H2 pressure, reaction time, solvent, and catalyst to FAL mass ratio) were evaluated intensively. Also, the Cu/AC–SO3H catalyst showed an excellent catalytic performance for transfer hydrogenation of FAL, in which 2-propanol was utilized as the solvent and hydrogen donor concurrently. Cycling test proved the prepared catalyst could be recycled and reused for several times without noticeably reduced catalytic activity of hydrogenation.
0

Lithium extraction from salt lake brine by four-stage ion-distillation of flow electrode capacitive deionization

Guangqiang Ma et al.May 24, 2024
Herein, a novel, highly efficient, and low-energy consumption four-stage ion-distillation of FCDI (ID-FCDI) device was developed that combined four commercial monovalent selective membranes with four flow electrode channels for high selectivity to extract Li+ ions from salt lake. It exhibited excellent separation factor (SMg2+Li+ = 11247.27), high enrichment ratio (4.95 times), super purity of Li+ ion solution (99.97 %), and low molar energy consumption (Em = 0.21 kWh mol−1) at mass ratio of Mg2+/Li+ = 1:1. The mathematical model calculation revealed that the excellent selective separation effectiveness of the as-proposed ID-FCDI system is due to the unique property of the monovalent selectivity membranes, in which the transmembrane rate of lithium ions is ten times that of magnesium ions under the same condition. Furthermore, the separation mechanism of the as-proposed ID-FCDI device for Li+/Mg2+ ions was determined by the high electrosorption capacity of the flow electrode for Li+ ions (1.14 times higher than Mg2+ ions), low diffusion resistance (1.413 Ω), and high diffusion coefficient of Li+ ions (2.83 times faster than Mg2+ ions) by electrochemical measurement. On this basis, 3.92 times of lithium was successfully enriched in the natural salt lake brine of Golmud (mass ratio of Mg2+/Li+ = 79.29), and the separation factor was 6307.17 with a 99.64 % purity of Li+ ion solution and an Em of 0.20 kWh mol−1. Finally, the Li2CO3 product (99.66 %) was precipitated via the reaction between Na2CO3 and the enriched Li+ ion solution, consequently fulfilling the battery-level application of the industrial purity requirements. These findings highlight that this device is promising and profitable for lithium extraction from salt lake in industrial production.
0
Paper
Citation1
0
Save
0

High‐Efficiency Electrochemical Desalination: The Role of a Rigid Pseudocapacitive Polymer Electrode with Diverse Active Sites

Yueheng Tao et al.Nov 12, 2024
Abstract Hybrid capacitive deionization (HCDI) emerges as a burgeoning electrochemical desalination technology due to the utilization of profitable pseudocapacitive reactions. Although tunable organic compounds are potential faradaic electrode materials, their insufficient active sites and high water‐solubility restrict practical HCDI applications. Herein, a pseudocapacitive organic polymer (PNDS) is proposed with diverse redox‐active sites for electrochemical deionization. The pronounced molecular aromaticity and strong π‐electron delocalization not only endow PNDS polymer with framework rigidity, but refine its electronic structure to bolster redox activity and electron affinity. As an electrode material, the PNDS polymer demonstrates a substantial pseudocapacitive capacitance of 390 F g −1 and sustains long‐term stability at 96.3% after 5000 cycles, surpassing reported Na + ‐capturing organic electrodes. In‐operando monitoring techniques and theoretical calculations reveal efficient Na + capture at the C═N and C═O redox‐active sites within the PNDS electrode during repeated electrosorption processes. As a conceptual demonstration, a high‐performance HCDI device equipped with the PNDS electrode exhibits an impressive salt removal capacity (66.4 mg g −1 ), a rapid removal rate (2.2 mg g −1 min −1 ) and stable regeneration property. More importantly, an integrated desalination system is engineered to rapidly and repeatedly treat saltwater resources for human consumption and agricultural irrigation, highlighting its promising prospects for high‐efficiency desalination applications.
0

A Survey of Planar Underactuated Mechanical System

Zixin Huang et al.Nov 21, 2024
Planar underactuated mechanical systems have been a popular research issue in the area of mechanical systems and nonlinear control. This paper reviews the current research status of control methods for a class of planar underactuated manipulator (PUM) systems containing a single passive joint. Firstly, the general dynamics model and kinematics model of the PUM are given, and its control characteristics are introduced; secondly, according to the distribution position characteristics of the passive joints, the PUM is classified into the passive first joint system, the passive last joint system, and the passive intermediate joint system, and the analysis and discussion are carried out in respect to the existing intelligent control methods. Finally, in response to the above discussion, we provide a brief theoretical analysis and summarize the challenges faced by PUM, i.e., uncertainty and robustness of the system, unified control methods and research on underactuated systems with uncontrollable multi-passive joints; at the same time, the practical applications have certain limitations that need to be implemented subsequently, i.e., anti-jamming, multi-planar underactuated robotic arm co-control and spatial underactuated robotic arm system development. Aiming at the above challenges and problems in the control of PUM systems, we elaborate on them in points, and put forward the research directions and related ideas for future work, taking into account the contributions of the current work.
Load More