DL
Dong‐Hee Lim
Author with expertise in Electrocatalysis for Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(0% Open Access)
Cited by:
1,431
h-index:
26
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction

Dong Chung et al.Dec 3, 2015
Demand on the practical synthetic approach to the high performance electrocatalyst is rapidly increasing for fuel cell commercialization. Here we present a synthesis of highly durable and active intermetallic ordered face-centered tetragonal (fct)-PtFe nanoparticles (NPs) coated with a "dual purpose" N-doped carbon shell. Ordered fct-PtFe NPs with the size of only a few nanometers are obtained by thermal annealing of polydopamine-coated PtFe NPs, and the N-doped carbon shell that is in situ formed from dopamine coating could effectively prevent the coalescence of NPs. This carbon shell also protects the NPs from detachment and agglomeration as well as dissolution throughout the harsh fuel cell operating conditions. By controlling the thickness of the shell below 1 nm, we achieved excellent protection of the NPs as well as high catalytic activity, as the thin carbon shell is highly permeable for the reactant molecules. Our ordered fct-PtFe/C nanocatalyst coated with an N-doped carbon shell shows 11.4 times-higher mass activity and 10.5 times-higher specific activity than commercial Pt/C catalyst. Moreover, we accomplished the long-term stability in membrane electrode assembly (MEA) for 100 h without significant activity loss. From in situ XANES, EDS, and first-principles calculations, we confirmed that an ordered fct-PtFe structure is critical for the long-term stability of our nanocatalyst. This strategy utilizing an N-doped carbon shell for obtaining a small ordered-fct PtFe nanocatalyst as well as protecting the catalyst during fuel cell cycling is expected to open a new simple and effective route for the commercialization of fuel cells.
0

Mechanisms of the Oxygen Reduction Reaction on Defective Graphene-Supported Pt Nanoparticles from First-Principles

Dong‐Hee Lim et al.Jan 11, 2012
The mechanisms of the oxygen reduction reaction (ORR) on defective graphene-supported Pt13 nanoparticles have been investigated to understand the effect of defective graphene support on the ORR and predict details of ORR pathways. We employed density functional theory (DFT) predictions using the projector-augmented wave (PAW) method within the generalized gradient approximation (GGA). Free energy diagrams for the ORR over supported and unsupported Pt13 nanoparticles were constructed to provide the stability of possible intermediates in the electrochemical reaction pathways. We demonstrate that the defective graphene support may provide a balance in the binding of ORR intermediates on Pt13 nanoparticles by tuning the relatively high reactivity of free Pt13 nanoparticles that bind the ORR intermediates too strongly subsequently leading to slow kinetics. The defective graphene support lowers not only the activation energy for O2 dissociation from 0.37 to 0.16 eV, but also the energy barrier of the rate-limiting step by reducing the stability of HO* species. We predict the ORR mechanisms via direct four-electron and series two-electron pathways. It has been determined that an activation free energy (0.16 eV) for O2 dissociation from adsorbed O2* at a bridge site on the supported Pt13 nanoparticle into O* + O* species (i.e., the direct pathway) is lower than the free energy barrier (0.29 eV) for the formation of HOO* species from adsorbed O2* at the corresponding atop site, indicating that the direct pathway may be preferred as the initial step of the ORR mechanism. Also, it has been observed that charge is transferred from the Pt13 nanoparticle to both defective graphene and the ORR intermediate species.
0
Citation321
0
Save
0

Nitrogen reduction reaction enhanced by single-atom transition metal catalysts on functionalized graphene: A first-principles study

Thillai Senthamaraikannan et al.May 30, 2024
Ammonia production seeks alternatives to the conventional Haber-Bosch process, with nitrogen reduction reaction (NRR) emerging promising. Addressing the challenge of efficient catalysts, the functionalized graphene-based single atom catalysts (SACs) stand out. While prior studies have favored heteroatom-doped catalysts, the coordination of metal centers with nitrogen atoms remains underexplored. This work investigates transition metal (TM) SACs on nitrogen-doped graphene (N3G) using density functional theory (DFT) for electro-catalytic NRR. Results highlight the stability of V@N3G, Mo@N3G, W@N3G, with binding energies of −7.77, −5.43, and −3.89 eV, respectively. Insights into work function, d-band center, N–N bond, and IR stretching's role in N2 activation are gained through this study. Bader charge analysis reveals electron redistribution between the support and adsorbed N2. Employing Computational Hydrogen Electrode (CHE) method, comparative free energy diagrams for TM@N3G (V, Mo, W) via., enzymatic, consecutive, alternating, and distal pathways outline potential rate determining step (PDS) with and without the Implicit solvation method. Remarkably, W@N3G catalyst exhibits the lowest PDS in the presence of solvation energy, surpassing other catalysts. The multi-adsorption of N2 on W@N3G enhances NRR process, stabilizing intermediates for efficient ammonia production. This computational study sheds light on metal center SACs on functionalized graphene support as a potential electro-catalyst for efficient and stable NRR.
0

Peanut-like hierarchical carbon nanofibers encapsulated carbon-coated NiCo/NiCoO hollow spheres as high-performance anode materials for Li-ion batteries and theoretical insights

Parthasarathi Bandyopadhyay et al.Jun 16, 2024
Transition metal oxides (TMOs) are considered favorable anode materials for lithium-ion batteries (LIBs); however, their poor conductivity, low-rate performance, and abrupt lithiated volumetric expansion make them unviable materials for a practical Li-ion full cell. As a prospective solution, a facile method of fabricating peanut-like porous carbon fibers (CFs) consisting of hollow carbon-coated NiCo–metal/oxide (NiCo–MO) spheres as high-performance anode (NiCo-MO@CFs) is reported. This synthesis route is simple and eco-friendly compared with the complicated synthesis of hollow TMOs, such as the hard template method, multistep route, or use of toxic reagents. The hollow structure can accommodate the abrupt lithiated volume variation of NiCo–MO, and the CFs can ensure structural durability during the discharge/charge process, offering a double buffering for the stress during volumetric fluctuation. A mechanistic study suggests that the hollow structure is formed by the typical Kirkendall diffusion, where encapsulation by CFs is a prerequisite. Outstanding Li-ion storage performance is supported by good rate capability and prolonged durability for 500 cycles at 1 A g−1 of NiCo-MO@CFs electrode. Remarkably, it shows a reversible discharge capacity of 894 mA h g−1 after the consecutive rate capability study and a successive discharge-charge process for 92 cycles at 0.1 A g−1. The computational study confirms that the most favorable Li adsorption sites for hybrid NiCo-MO@CFs surface are CoO-bridges and the hybrid surface provides enhanced Li adsorption energies and conductivity. Furthermore, a full cell was constructed using LiFePO4 (cathode) and NiCo-MO@CFs (anode), which exhibits a discharge capacity of 616 mA h g−1 (anode-based) at 0.1 A g−1 with 66 % capacity retention after 100 cycles.