YY
Yong Yang
Author with expertise in Active Learning in Machine Learning Research
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
1
h-index:
35
/
i10-index:
96
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

ECLB: Efficient contrastive learning on bi-level for noisy labels

Juwei Guan et al.Jun 15, 2024
For contrastive learning has achieved remarkable success in self-supervised and supervised informative representation, learning with noisy labels based on contrastive learning is becoming the research consensus. However, under noisy labels, how to efficiently leverage informative representation of various levels and how to effectively screen reliable positive pairs for the optimization of the contrastive learning model are still challenges. To address these issues, we innovatively propose a method named efficient contrastive learning on bi-level for noisy labels (ECLB), which is jointly implemented by both self-supervised and supervised contrastive learning. For the accessible informative representation, we propose to perform contrastive learning at two different levels: (1) feature level, where feature representation is jointly optimized by supervised and self-supervised feature contrastive loss; (2) label level, where feature and label representation are optimized by label distribution supervised contrastive loss. Furthermore, to alleviate the impact of noisy labels on the selection of reliable positive pairs in supervised contrastive learning and to reduce labor cost and computational complexity, we propose an efficient adaptive mask, which is dynamically generated by label self-equality mask, prediction self-equality mask, label-prediction equality mask, and feature similarity mask. Extensive experiments show that our proposed method outperforms other state-of-the-art methods in terms of robustness and generalization. Our code is publicly available at: https://github.com/whyandbecause/ECLB
0
Citation1
0
Save
0

MFITN: A Multilevel Feature Interaction Transformer Network for Pansharpening

Changjie Chen et al.Jan 1, 2024
In this letter, to better supplement the advantages of features at different levels and improve the feature extraction ability of the network, a novel multi-level feature interaction transformer network (MFITN) is proposed for pansharpening, aiming to fuse multispectral (MS) and panchromatic (PAN) images. In MFITN, a multi-level feature interaction transformer encoding module is designed to extract and correct global multi-level features by considering the modality difference between source images. These features are then fused using the proposed multi-level feature mixing (MFM) operation, which enables features to fuse interactively to obtain richer information. Furthermore, the global features are fed into a CNN-based local decoding module to better reconstruct high-spatial-resolution multispectral (HRMS) images. Additionally, based on the spatial consistency between MS and PAN images, a band compression loss is defined to improve the fidelity of fused images. Numerous simulated and real experiments demonstrate that the proposed method has the optimal performance compared to state-of-the-art methods. Specifically, the proposed method improves the SAM metric by 7.89% and 6.41% compared to the second-best comparison approach on Pléiades and WorldView-3, respectively.