JZ
Ji‐Guang Zhang
Author with expertise in Lithium-ion Battery Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
95
(34% Open Access)
Cited by:
49,176
h-index:
134
/
i10-index:
335
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Lithium metal anodes for rechargeable batteries

Wu Xu et al.Oct 29, 2013
Lithium (Li) metal is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mA h g−1), low density (0.59 g cm−3) and the lowest negative electrochemical potential (−3.040 V vs. the standard hydrogen electrode). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post-Li-ion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li–air batteries, Li–S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this paper, various factors that affect the morphology and Coulombic efficiency of Li metal anodes have been analyzed. Technologies utilized to characterize the morphology of Li deposition and the results obtained by modelling of Li dendrite growth have also been reviewed. Finally, recent development and urgent need in this field are discussed.
1

Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes

Xiaolin Li et al.Jul 8, 2014
Nanostructured silicon is a promising anode material for high-performance lithium-ion batteries, yet scalable synthesis of such materials, and retaining good cycling stability in high loading electrode remain significant challenges. Here we combine in-situ transmission electron microscopy and continuum media mechanical calculations to demonstrate that large (>20 μm) mesoporous silicon sponge prepared by the anodization method can limit the particle volume expansion at full lithiation to ~30% and prevent pulverization in bulk silicon particles. The mesoporous silicon sponge can deliver a capacity of up to ~750 mAh g−1 based on the total electrode weight with >80% capacity retention over 1,000 cycles. The first cycle irreversible capacity loss of pre-lithiated electrode is <5%. Bulk electrodes with an area-specific-capacity of ~1.5 mAh cm−2 and ~92% capacity retention over 300 cycles are also demonstrated. The insight obtained from this work also provides guidance for the design of other materials that may experience large volume variation during operations. Silicon is a promising anode material for lithium ion batteries, but suffers from poor cyclability especially at high mass loading. Here, Li et al. synthesize mesoporous silicon sponge-like structures, which show promising performance at the deep lithiation and high loading conditions required for practical applications.
Load More