Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
XD
Xiuzheng Deng
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
3
h-index:
1
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Internal electric field-modulated dual S-scheme ZnO@Co3O4/CsPbBr3 nanocages for highly active and selective photocatalytic CO2 reduction

Jingshan Fan et al.May 27, 2024
The rational design of a step-scheme (S-scheme) heterojunction with strong internal electric field (IEF) and high redox capacity is a promising strategy for photocatalytic CO2 reduction reaction (CO2RR). However, the precise process of charge transport on the multi-interfaces remains a great challenge. Herein, a dual S-scheme heterojunction constructed in the ZnO@Co3O4/CsPbBr3 hierarchical nanocage was prepared for enhancing CO2RR activity. Without sacrificial agent and photosensitizer, the optimal photocatalyst exhibits a competitive CH4 yield rate of 238.8 μmol g−1h−1 with high selectivity (90.9%), affording an apparent quantum efficiency of 4.6 % at 400 nm, outperforming most previously comparable photocatalysts. In situ X-ray photoelectron spectroscopy (in situ XPS), photoelectrochemical measurement and theoretical calculation verifies the dual S-schematic charge-transport pathway. The remarkably improved performance in CO2RR is due to the rapid charge separation through O-Co-Br bridge driven by the strong internal electric field. This research furnishes a new insight to reveal dynamic charge transfer mechanism for CO2 conversion applications.
0

Regulating the Oxygen Vacancy on Bi2MoO6/Co3O4 Core‐Shell Nanocage Enables Highly Selective CO2 Photoreduction to CH4

Jingshan Fan et al.Aug 6, 2024
Abstract Photocatalytic CO 2 reduction reaction (CO 2 RR) into high‐value‐added fuels has received significant attention, yet multiple electron and proton processes involved in CO 2 RR result in low selectivity. Herein, a strategy involving oxygen vacancies (Ovs)‐enriched Bi 2 MoO 6 coated on ZIF‐67‐derived Co 3 O 4 to construct well‐defined core‐shell nanocage is developed, which drives effective CO 2 photoconversion to CH 4 with nearly 100% selectivity and high apparent quantum efficiency of 2.5% at 420 nm in pure water under simulated irradiation. Theoretical calculations and experiments exhibit that the potential difference stemming from the built‐in electric field provides guarantee for CO 2 reduction occurring on Bi 2 MoO 6 and H 2 O oxidation set in Co 3 O 4 . Numerous exposed Bi 2 MoO 6 with Ovs formed in Bi─O bond by ethylene glycol mediated approach promotes the CO 2 adsorption and charge separation efficiency, which can optimize the reaction kinetics and thermodynamics, facilitating the hydrogenation of key intermediate *CO to generate CH 4 . This work provides a new strategy for controlled oxygen vacancy generation on photocatalysts to achieve high‐performance CO 2 methanation.