YT
Ying Tang
Author with expertise in Exosome Biology and Function in Intercellular Communication
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
265
h-index:
24
/
i10-index:
39
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Extracellular Vesicle–Mediated Delivery of Circular RNA SCMH1 Promotes Functional Recovery in Rodent and Nonhuman Primate Ischemic Stroke Models

Li Yang et al.May 22, 2020
Background: Stroke is a leading cause of adult disability that can severely compromise the quality of life of patients, yet no effective medication currently exists to accelerate rehabilitation. A variety of circular RNA (circRNA) molecules are known to function in ischemic brain injury. Lentivirus-based expression systems have been widely used in basic studies of circRNAs, but safety issues with such delivery systems have limited exploration of the potential therapeutic roles for circRNAs. Methods: Circular RNA SCMH1 (circSCMH1) was screened from the plasma of patients with acute ischemic stroke by using circRNA microarrays. Engineered rabies virus glycoprotein-circSCMH1-extracellular vesicles were generated to selectively deliver circSCMH1 to the brain. Nissl staining was used to examine infarct size. Behavioral tasks were performed to evaluate motor functions in both rodent and nonhuman primate ischemic stroke models. Golgi staining and immunostaining were used to examine neuroplasticity and glial activation. Proteomic assays and RNA-sequencing data combined with transcriptional profiling were used to identify downstream targets of circSCMH1. Results: CircSCMH1 levels were significantly decreased in the plasma of patients with acute ischemic stroke, offering significant power in predicting stroke outcomes. The decreased levels of circSCMH1 were further confirmed in the plasma and peri-infarct cortex of photothrombotic stroke mice. Beyond demonstrating proof-of-concept for an RNA drug delivery technology, we observed that circSCMH1 treatment improved functional recovery after stroke in both mice and monkeys, and we discovered that circSCMH1 enhanced the neuronal plasticity and inhibited glial activation and peripheral immune cell infiltration. CircSCMH1 binds mechanistically to the transcription factor MeCP2 (methyl-CpG binding protein 2), thereby releasing repression of MeCP2 target gene transcription. Conclusions: Rabies virus glycoprotein-circSCMH1-extracellular vesicles afford protection by promoting functional recovery in the rodent and the nonhuman primate ischemic stroke models. Our study presents a potentially widely applicable nucleotide drug delivery technology and demonstrates the basic mechanism of how circRNAs can be therapeutically exploited to improve poststroke outcomes.
0

Endothelial cell-derived extracellular vesicles modulate the therapeutic efficacy of mesenchymal stem cells through IDH2/TET pathway in ARDS

Xiao Wu et al.May 27, 2024
Abstract Background Acute respiratory distress syndrome (ARDS) is a severe and fatal disease. Although mesenchymal stem cell (MSC)-based therapy has shown remarkable efficacy in treating ARDS in animal experiments, clinical outcomes have been unsatisfactory, which may be attributed to the influence of the lung microenvironment during MSC administration. Extracellular vesicles (EVs) derived from endothelial cells (EC-EVs) are important components of the lung microenvironment and play a crucial role in ARDS. However, the effect of EC-EVs on MSC therapy is still unclear. In this study, we established lipopolysaccharide (LPS) - induced acute lung injury model to evaluate the impact of EC-EVs on the reparative effects of bone marrow-derived MSC (BM-MSC) transplantation on lung injury and to unravel the underlying mechanisms. Methods EVs were isolated from bronchoalveolar lavage fluid of mice with LPS - induced acute lung injury and patients with ARDS using ultracentrifugation. and the changes of EC-EVs were analysed using nanoflow cytometry analysis. In vitro assays were performed to establish the impact of EC-EVs on MSC functions, including cell viability and migration, while in vivo studies were performed to validate the therapeutic effect of EC-EVs on MSCs. RNA-Seq analysis, small interfering RNA (siRNA), and a recombinant lentivirus were used to investigate the underlying mechanisms. Results Compared with that in non-ARDS patients, the quantity of EC-EVs in the lung microenvironment was significantly greater in patients with ARDS. EVs derived from lipopolysaccharide-stimulated endothelial cells (LPS-EVs) significantly decreased the viability and migration of BM-MSCs. Furthermore, engrafting BM-MSCs pretreated with LPS-EVs promoted the release of inflammatory cytokines and increased pulmonary microvascular permeability, aggravating lung injury. Mechanistically, LPS-EVs reduced the expression level of isocitrate dehydrogenase 2 (IDH2), which catalyses the formation of α-ketoglutarate (α-KG), an intermediate product of the tricarboxylic acid (TCA) cycle, in BM-MSCs. α-KG is a cofactor for ten-eleven translocation (TET) enzymes, which catalyse DNA hydroxymethylation in BM-MSCs. Conclusions This study revealed that EC-EVs in the lung microenvironment during ARDS can affect the therapeutic efficacy of BM-MSCs through the IDH2/TET pathway, providing potential strategies for improving the therapeutic efficacy of MSC-based therapy in the clinic.
0
Citation1
0
Save