YW
Yanrong Wu
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
7,106
h-index:
23
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Carbon Nanotube-Quenched Fluorescent Oligonucleotides: Probes that Fluoresce upon Hybridization

Ronghua Yang et al.Jun 5, 2008
We report an effective, novel self-assembled single-wall carbon nanotube (SWNT) complex with an oligonucleotide and demonstrate its feasibility in recognizing and detecting specific DNA sequences in a single step in a homogeneous solution. The key component of this complex is the hairpin-structured fluorescent oligonucleotide that allows the SWNT to function as both a "nanoscaffold" for the oligonucleotide and a "nanoquencher" of the fluorophore. Given this functionality, this carbon nanotube complex represents a new class of universal fluorescence quenchers that are substantially different from organic quenchers and should therefore have many applications in molecular engineering and biosensor development. Competitive binding of a DNA target and SWNTs with the oligonucleotide results in fluorescence signal increments relative to the fluorescence without a target as well as in marked fluorescence quenching. In contrast to the common loop-and-stem configuration of molecular beacons (MBs), this novel fluorescent oligonucleotide needs only one labeled fluorophore, yet the emission can be measured with little or no background interference. This property greatly improves the signal-to-background ratio compared with those for conventional MBs, while the DNA-binding specificity is still maintained by the MB. To test the interaction mechanisms of the fluorescent oligonucleotide with SWNTs and target DNA, thermodynamic analysis and fluorescence anisotropy measurements, respectively, were applied. Our results show that MB/SWNT probes can be an excellent platform for nucleic acid studies and molecular sensing.
0

Watching Silica Nanoparticles Glow in the Biological World

Lin Wang et al.Feb 1, 2006
ADVERTISEMENT RETURN TO ISSUEPREVFEATURESNEXTWatching Silica Nanoparticles Glow in the Biological WorldLin Wang, Kemin Wang, Swadeshmukul Santra, Xiaojun Zhao, Lisa R. Hilliard, Joshua E. Smith, Yanrong Wu, and Weihong TanCite this: Anal. Chem. 2006, 78, 3, 646–654Publication Date (Web):February 1, 2006Publication History Published online1 February 2006Published inissue 1 February 2006https://doi.org/10.1021/ac0693619RIGHTS & PERMISSIONSArticle Views5629Altmetric-Citations305LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InReddit PDF (438 KB) Get e-AlertscloseSUBJECTS:Nanoparticles Get e-Alerts
0

DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells

Yanrong Wu et al.Dec 22, 2009
We report the design of a self-assembled aptamer–micelle nanostructure that achieves selective and strong binding of otherwise low-affinity aptamers at physiological conditions. Specific recognition ability is directly built into the nanostructures. The attachment of a lipid tail onto the end of nucleic acid aptamers provides these unique nanostructures with an internalization pathway. Other merits include: extremely low off rate once bound with target cells, rapid recognition ability with enhanced sensitivity, low critical micelle concentration values, and dual-drug delivery pathways. To prove the potential detection/delivery application of this aptamer–micelle in biological living systems, we mimicked a tumor site in the blood stream by immobilizing tumor cells onto the surface of a flow channel device. Flushing the aptamer–micelles through the channel demonstrated their selective recognition ability under flow circulation in human whole-blood sample. The aptamer–micelles show great dynamic specificity in flow channel systems that mimic drug delivery in the blood system. Therefore, our DNA aptamer–micelle assembly has shown high potential for cancer cell recognition and for in vivo drug delivery applications.
0
Citation320
0
Save
0

Pyrene Excimer Signaling Molecular Beacons for Probing Nucleic Acids

Patrick Conlon et al.Dec 14, 2007
Molecular beacon DNA probes, containing 1-4 pyrene monomers on the 5' end and the quencher DABCYL on the 3' end, were engineered and employed for real-time probing of DNA sequences. In the absence of a target sequence, the multiple-pyrene labeled molecular beacons (MBs) assumed a stem-closed conformation resulting in quenching of the pyrene excimer fluorescence. In the presence of target, the beacons switched to a stem-open conformation, which separated the pyrene label from the quencher molecule and generated an excimer emission signal proportional to the target concentration. Steady-state fluorescence assays resulted in a subnanomolar limit of detection in buffer, whereas time-resolved signaling enabled low-nanomolar target detection in cell-growth media. It was found that the excimer emission intensity could be scaled by increasing the number of pyrene monomers conjugated to the 5' terminal. Each additional pyrene monomer resulted in substantial increases in the excimer emission intensities, quantum yields, and excited-state lifetimes of the hybridized MBs. The long fluorescence lifetime ( approximately 40 ns), large Stokes shift (130 nm), and tunable intensity of the excimer make this multiple-pyrene moiety a useful alternative to traditional fluorophore labeling in nucleic acid probes.