QP
Quan-Ke Pan
Author with expertise in Scheduling Problems in Manufacturing Systems
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
22
(23% Open Access)
Cited by:
5,644
h-index:
83
/
i10-index:
212
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem

Quan-Ke Pan et al.Jan 5, 2010
In this paper, a discrete artificial bee colony (DABC) algorithm is proposed to solve the lot-streaming flow shop scheduling problem with the criterion of total weighted earliness and tardiness penalties under both the idling and no-idling cases. Unlike the original ABC algorithm, the proposed DABC algorithm represents a food source as a discrete job permutation and applies discrete operators to generate new neighboring food sources for the employed bees, onlookers and scouts. An efficient initialization scheme, which is based on the earliest due date (EDD), the smallest slack time on the last machine (LSL) and the smallest overall slack time (OSL) rules, is presented to construct the initial population with certain quality and diversity. In addition, a self adaptive strategy for generating neighboring food sources based on insert and swap operators is developed to enable the DABC algorithm to work on discrete/combinatorial spaces. Furthermore, a simple but effective local search approach is embedded in the proposed DABC algorithm to enhance the local intensification capability. Through the analysis of experimental results, the highly effective performance of the proposed DABC algorithm is shown against the best performing algorithms from the literature.
0

A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem

Quan-Ke Pan et al.Apr 3, 2007
In this paper, a discrete particle swarm optimization (DPSO) algorithm is presented to solve the no-wait flowshop scheduling problem with both makespan and total flowtime criteria. The main contribution of this study is due to the fact that particles are represented as discrete job permutations and a new position update method is developed based on the discrete domain. In addition, the DPSO algorithm is hybridized with the variable neighborhood descent (VND) algorithm to further improve the solution quality. Several speed-up methods are proposed for both the swap and insert neighborhood structures. The DPSO algorithm is applied to both 110 benchmark instances of Taillard [Benchmarks for basic scheduling problems. European Journal of Operational Research 1993;64:278–85] by treating them as the no-wait flowshop problem instances with the total flowtime criterion, and to 31 benchmark instances provided by Carlier [Ordonnancements a contraintes disjonctives. RAIRO Recherche operationelle 1978;12:333–51], Heller [Some numerical experiments for an M×J flow shop and its decision-theoretical aspects. Operations Research 1960;8:178–84], and Revees [A genetic algorithm for flowshop sequencing. Computers and Operations Research 1995;22:5–13] for the makespan criterion. For the makespan criterion, the solution quality is evaluated according to the reference makespans generated by Rajendran [A no-wait flowshop scheduling heuristic to minimize makespan. Journal of the Operational Research Society 1994;45:472–8] whereas for the total flowtime criterion, it is evaluated with the optimal solutions, lower bounds and best known solutions provided by Fink and Voß [Solving the continuous flow-shop scheduling problem by metaheuristics. European Journal of Operational Research 2003;151:400–14]. The computational results show that the DPSO algorithm generated either competitive or better results than those reported in the literature. Ultimately, 74 out of 80 best known solutions provided by Fink and Voß [Solving the continuous flow-shop scheduling problem by metaheuristics. European Journal of Operational Research 2003;151:400–14] were improved by the VND version of the DPSO algorithm.
0

Iterated Greedy methods for the distributed permutation flowshop scheduling problem

Rubén Ruíz et al.Mar 16, 2018
Large manufacturing firms operate more than one production center. As a result, in relation to scheduling problems, which factory manufactures which product is an important consideration. In this paper we study an extension of the well known permutation flowshop scheduling problem in which there is a set of identical factories, each one with a flowshop structure. The objective is to minimize the maximum completion time or makespan among all factories. The resulting problem is known as the distributed permutation flowshop and has attracted considerable interest over the last few years. Contrary to the recent trend in the scheduling literature, where complex nature-inspired or metaphor-based methods are often proposed, we present simple Iterated Greedy algorithms that have performed well in related problems. Improved initialization, construction and destruction procedures, along with a local search with a strong intensification are proposed. The result is a very effective algorithm with little problem-specific knowledge that is shown to provide demonstrably better solutions in a comprehensive and thorough computational and statistical campaign.
0

A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities

Junqing Li et al.Aug 19, 2013
This paper presents a novel discrete artificial bee colony (DABC) algorithm for solving the multi-objective flexible job shop scheduling problem with maintenance activities. Performance criteria considered are the maximum completion time so called makespan, the total workload of machines and the workload of the critical machine. Unlike the original ABC algorithm, the proposed DABC algorithm presents a unique solution representation where a food source is represented by two discrete vectors and tabu search (TS) is applied to each food source to generate neighboring food sources for the employed bees, onlooker bees, and scout bees. An efficient initialization scheme is introduced to construct the initial population with a certain level of quality and diversity. A self-adaptive strategy is adopted to enable the DABC algorithm with learning ability for producing neighboring solutions in different promising regions whereas an external Pareto archive set is designed to record the non-dominated solutions found so far. Furthermore, a novel decoding method is also presented to tackle maintenance activities in schedules generated. The proposed DABC algorithm is tested on a set of the well-known benchmark instances from the existing literature. Through a detailed analysis of experimental results, the highly effective and efficient performance of the proposed DABC algorithm is shown against the best performing algorithms from the literature.
0
Citation254
0
Save
0

Flexible Job-Shop Rescheduling for New Job Insertion by Using Discrete Jaya Algorithm

Kaizhou Gao et al.Apr 24, 2018
Rescheduling is a necessary procedure for a flexible job shop when newly arrived priority jobs must be inserted into an existing schedule. Instability measures the amount of change made to the existing schedule and is an important metrics to evaluate the quality of rescheduling solutions. This paper focuses on a flexible job-shop rescheduling problem (FJRP) for new job insertion. First, it formulates FJRP for new job insertion arising from pump remanufacturing. This paper deals with bi-objective FJRPs to minimize: 1) instability and 2) one of the following indices: a) makespan; b) total flow time; c) machine workload; and d) total machine workload. Next, it discretizes a novel and simple metaheuristic, named Jaya, resulting in DJaya and improves it to solve FJRP. Two simple heuristics are employed to initialize high-quality solutions. Finally, it proposes five objective-oriented local search operators and four ensembles of them to improve the performance of DJaya. Finally, it performs experiments on seven real-life cases with different scales from pump remanufacturing and compares DJaya with some state-of-the-art algorithms. The results show that DJaya is effective and efficient for solving the concerned FJRPs.
0
Citation243
0
Save
Load More