HM
Huili Ma
Author with expertise in Aggregation-Induced Emission in Fluorescent Materials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
29
(38% Open Access)
Cited by:
8,238
h-index:
65
/
i10-index:
157
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Size-Dependent Localization and Penetration of Ultrasmall Gold Nanoparticles in Cancer Cells, Multicellular Spheroids, and Tumors in Vivo

Keyang Huang et al.Apr 27, 2012
This work demonstrated that ultrasmall gold nanoparticles (AuNPs) smaller than 10 nm display unique advantages over nanoparticles larger than 10 nm in terms of localization to, and penetration of, breast cancer cells, multicellular tumor spheroids, and tumors in mice. Au@tiopronin nanoparticles that have tunable sizes from 2 to 15 nm with identical surface coatings of tiopronin and charge were successfully prepared. For monolayer cells, the smaller the Au@tiopronin NPs, the more AuNPs found in each cell. In addition, the accumulation of Au NPs in the ex vivo tumor model was size-dependent: smaller AuNPs were able to penetrate deeply into tumor spheroids, whereas 15 nm nanoparticles were not. Owing to their ultrasmall nanostructure, 2 and 6 nm nanoparticles showed high levels of accumulation in tumor tissue in mice after a single intravenous injection. Surprisingly, both 2 and 6 nm Au@tiopronin nanoparticles were distributed throughout the cytoplasm and nucleus of cancer cells in vitro and in vivo, whereas 15 nm Au@tiopronin nanoparticles were found only in the cytoplasm, where they formed aggregates. The ex vivo multicellular spheroid proved to be a good model to simulate in vivo tumor tissue and evaluate nanoparticle penetration behavior. This work gives important insights into the design and functionalization of nanoparticles to achieve high levels of accumulation in tumors.
0
Citation746
0
Save
0

Efficient and Long-Lived Room-Temperature Organic Phosphorescence: Theoretical Descriptors for Molecular Designs

Huili Ma et al.Dec 19, 2018
Room-temperature phosphorescence (RTP) with long afterglow from pure organic materials has attracted great attention for its potential applications in biological imaging, digital encryption, optoelectronic devices, and so on. Organic materials have been long considered to be nonphosphorescent owing to their weak molecular spin-orbit coupling and high sensitivity to temperature. However, recently, some purely organic compounds have demonstrated highly efficient RTP with long afterglow upon aggregation, while others fail. Namely, it remains a challenge to expound on the underlying mechanisms. In this study, we present the molecular descriptors to characterize the phosphorescence efficiency and lifetime. For a prototypical RTP system consisting of a carbonyl group and π-conjugated segments, the excited states can be regarded as an admixture of n → π* (with portion α) and π → π* (portion β). Starting from the phosphorescent process and El-Sayed rule, we deduced that (i) the intersystem crossing (ISC) rate of S1 → T n is mostly governed by the modification of the product of α and β and (ii) the ISC rate of T1 → S0 is determined by the β value of T1. Thus, the descriptors (γ = α × β, β) can be employed to describe the RTP character of organic molecules. From hybrid quantum mechanics and molecular mechanics (QM/MM) calculations, we illustrated the relationships among the descriptors (γ, β), phosphorescence efficiency and lifetime, and spin-orbit coupling constants. We stressed that the large γ and β values are favorable for the strong and long-lived RTP in organic materials. Experiments have reported confirmations of these molecular design rules.
0

Simultaneously Enhancing Efficiency and Lifetime of Ultralong Organic Phosphorescence Materials by Molecular Self-Assembly

Lifang Bian et al.Aug 5, 2018
Metal-free organic phosphorescence materials are of imperious demands in optoelectronics and bioelectronics. However, it is still a formidable challenge to develop a material with simultaneous efficiency and lifetime enhancement under ambient conditions. In this study, we design and synthesize a new class of high efficient ultralong organic phosphorescence (UOP) materials through self-assembly of melamine and aromatic acids in aqueous media. A supramolecular framework can be formed via multiple intermolecular interactions, building a rigid environment to lock the molecules firmly in a three-dimensional network, which not only effectively limits the nonradiative decay of the triplet excitons but also promotes the intersystem crossing. Thus, the supermolecules we designed synchronously achieve an ultralong emission lifetime of up to 1.91 s and a high phosphorescence quantum efficiency of 24.3% under ambient conditions. To the best of our knowledge, this is the best performance of UOP materials with simultaneous efficiency and lifetime enhancement. Furthermore, it is successfully applied in a barcode identification in darkness. This result not only paves the way toward high efficient UOP materials but also expands their applications.
Load More