AJ
Akshaya Jagannath
Author with expertise in Mechanical Properties of Thin Film Coatings
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
2
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Surface Wettability and Tribological Performance of Ni-based Nanocomposite Moulds against Polymer Materials

Tianyu Guan et al.May 1, 2024
In the mass-production of microfluidic devices through micro hot embossing/injection moulding, the longevity of mould inserts is influenced by elevated adhesion and friction between the polymer and the mould. Thus, accurate prediction of mould lifespan requires a comprehensive understanding of surface wettability and tribological performance during polymer contact. The current study addresses this gap by characterizing fabricated micro-structured Ni, Ni-WS2, and Ni-PTFE nanocomposite moulds (surface morphologies, crystal structures and microhardness) to investigate inherent lubrication mechanisms. Surface wettability of mould material was systematically studied by measuring the contact angles with eight different polymer melts. Pin-on-disk tests with polymer pins made of cyclic olefin copolymer (COC 8007), polypropylene (PP), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were conducted to elucidate the wear resistance of the nanocomposite moulds. Pressure-dependent friction coefficient and wear resistance were further explored under increasing external loads, simulating the actual moulding processes where contact pressure may vary considerably depending on the part shape. Results indicate that Ni-WS2 exhibits the highest microhardness (532 Hv), followed by Ni-PTFE (465 Hv) and Ni (198 Hv). Notably, Ni-PTFE demonstrates exceptional hydrophobicity against all polymer melts, signifying low surface energy during polymer contact. Moreover, both nanocomposite moulds exhibit reduced friction coefficients and enhanced wear resistance across various polymers. Counterintuitively, despite its lower hardness, the Ni-PTFE mould displays superior wear resistance against the COC pin under higher loads, while the Ni-WS2 mould experiences severe adhesive wear, as observed from wear morphology and profile analysis. This finding establishes the Ni-PTFE as a promising alternative as a mould insert material for precision manufacturing.
0

Improving assay feasibility and biocompatibility of 3D cyclic olefin copolymer microwells by superhydrophilic modification via ultrasonic spray deposition of polyvinyl alcohol

Akshaya Jagannath et al.Jun 28, 2024
Sample partitioning is a crucial step towards digitization of biological assays on polymer microfluidic platforms. However, effective liquid filling into microwells and long-term hydrophilicity remain a challenge in polymeric microfluidic devices, impeding the applicability in diagnostic and cell culture studies. To overcome this, a method to produce permanent superhydrophilic 3-dimensional microwells using cyclic olefin copolymer (COC) microfluidic chips is presented. The COC substrate is oxidized using UV treatment followed by ultrasonic spray coating of polyvinyl alcohol solution, offering uniform and long-term coating of high-aspect ratio microfeatures. The coated COC surfaces are UV-cured before bonding with a hydrophobic pressure-sensitive adhesive to drive selective filling into the wells. The surface hydrophilicity achieved using this method remains unchanged (water contact angle of 9°) for up to 6 months and the modified surface is characterized for physical (contact angle & surface energy, morphology, integrity of microfeatures and roughness), chemical composition (FTIR, Raman spectroscopy) and coating stability (pH, temperature, time). To establish the feasibility of the modified surface in biological applications, PVA-coated COC microfluidic chips are tested for DNA sensing (digital LAMP detection of CMV), and biocompatibility through protein adsorption and cell culture studies (cell adhesion, viability, and metabolic activity). Kidney and breast cells remained viable for the duration of testing (7 days) on this modified surface, and the coating did not affect the protein content, morphology or quality of the cultured cells. The ultrasonic spray coated system, coating with 0.25 % PVA for 15 cycles with 0.12 A current after UV oxidation, increased the surface energy of the COC (naturally hydrophobic) from 22.04 to 112.89 mJ/m2 and improved the filling efficiency from 40 % (native untreated COC) to 94 % in the microwells without interfering with the biocompatibility of the surface, proving to be an efficient, high-throughput and scalable method of microfluidic surface treatment for diagnostic and cell growth applications.
0

Toward Defect‐Free Nanoimprinting

Tianyu Guan et al.Jun 14, 2024
Nanoimprinting large-area structures, especially high-density features like meta lenses, poses challenges in achieving defect-free nanopatterns. Conventional high-resolution molds for nanoimprinting are often expensive, typically constructed from inorganic materials such as silicon, nickel (Ni), or quartz. Unfortunately, replicated nanostructures frequently suffer from breakage or a lack of definition during demolding due to the high adhesion and friction at the polymer-mold interface. Moreover, mold degradation after a limited number of imprinting cycles, attributed to contamination and damaged features, is a common issue. In this study, a disruptive approach is presented to address these challenges by successfully developing an anti-sticking nanocomposite mold. This nanocomposite mold is created through the co-deposition of nickel atoms and low surface tension polytetrafluoroethylene (PTFE) nanoparticles via electroforming. The incorporation of PTFE enhances the ease of polymer release from the mold. The resulting Ni-PTFE nanocomposite mold exhibits exceptional lubrication properties and a significantly reduced surface energy. This robust nanocomposite mold proves effective in imprinting fine, densely packed nanostructures down to 100 nm using thermal nanoimprinting for at least 20 cycles. Additionally, UV nanoimprint lithography (UV-NIL) is successfully performed with this nanocomposite mold. This work introduces a novel and cost-effective approach to reusable high-resolution molds, ensuring defect-reduction production in nanoimprinting.