Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
GA
Gonzalo Abad
Author with expertise in Atmospheric Aerosols and their Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(100% Open Access)
Cited by:
1,910
h-index:
40
/
i10-index:
73
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Tropospheric emissions: Monitoring of pollution (TEMPO)

P. Zoogman et al.Jun 6, 2016
TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide),water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.
0

Importance of secondary sources in the atmospheric budgets of formic and acetic acids

Fabien Paulot et al.Mar 4, 2011
Abstract. We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are ~1200 and ~1400 Gmol yr−1, dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.
0
Paper
Citation329
0
Save
0

New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

Jhoon Kim et al.Aug 23, 2019
The Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in February 2020 to monitor air quality (AQ) at an unprecedented spatial and temporal resolution from a geostationary Earth orbit (GEO) for the first time. With the development of UV–visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO, and aerosols) can be obtained. To date, all the UV–visible satellite missions monitoring air quality have been in low Earth orbit (LEO), allowing one to two observations per day. With UV–visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be on board the Geostationary Korea Multi-Purpose Satellite 2 (GEO-KOMPSAT-2) satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager 2 (GOCI-2). These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) and ESA’s Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS).
0
Paper
Citation306
0
Save
0

Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval

Gonzalo Abad et al.Jan 5, 2015
Abstract. We present and discuss the Smithsonian Astrophysical Observatory (SAO) formaldehyde (H2CO) retrieval algorithm for the Ozone Monitoring Instrument (OMI) which is the operational retrieval for NASA OMI H2CO. The version of the algorithm described here includes relevant changes with respect to the operational one, including differences in the reference spectra for H2CO, the fit of O2–O2 collisional complex, updates in the high-resolution solar reference spectrum, the use of a model reference sector over the remote Pacific Ocean to normalize the retrievals, an updated air mass factor (AMF) calculation scheme, and the inclusion of scattering weights and vertical H2CO profile in the level 2 products. The setup of the retrieval is discussed in detail. We compare the results of the updated retrieval with the results from the previous SAO H2CO retrieval. The improvement in the slant column fit increases the temporal stability of the retrieval and slightly reduces the noise. The change in the AMF calculation has increased the AMFs by 20%, mainly due to the consideration of the radiative cloud fraction. Typical values for retrieved vertical columns are between 4 × 1015 and 4 × 1016 molecules cm−2, with typical fitting uncertainties ranging between 45 and 100%. In high-concentration regions the errors are usually reduced to 30%. The detection limit is estimated at 1 × 1016 molecules cm−2.
0
Paper
Citation207
0
Save
0

Interannual variability of summertime formaldehyde (HCHO) vertical column density and its main drivers at northern high latitudes

Tianlang Zhao et al.May 28, 2024
Abstract. The northern high latitudes (50–90° N, mostly including boreal-forest and tundra ecosystems) have been undergoing rapid climate and ecological changes over recent decades, leading to significant variations in volatile organic compounds (VOC) emissions from biogenic and biomass burning sources. Formaldehyde (HCHO) is an indicator of VOC emissions, but the interannual variability of HCHO and its main drivers over the region remains unclear. In this study, we use the GEOS-Chem chemical transport model and satellite retrievals from the Ozone Monitoring Instrument (OMI) and the Ozone Mapping and Profiler Suite (OMPS) to examine the interannual variability of HCHO vertical column density (VCD) during the summer seasons spanning from 2005 to 2019. Our results show that, in 2005–2019 summers, wildfires contributed 75 %–90 % of the interannual variability of HCHO VCD over Siberia, Alaska and northern Canada, while biogenic emissions and background methane oxidation account for ∼ 90 % of HCHO interannual variability over eastern Europe. We find that monthly solar-induced chlorophyll fluorescence (SIF) from the Orbiting Carbon Observatory-2 (OCO-2), an efficient proxy for plant photosynthesis, shows a good linear relationship (R= 0.6–0.7) with the modeled biogenic HCHO column (dVCDBio,GC) in eastern Europe, Siberia, Alaska and northern Canada, indicating the coupling between SIF and biogenic VOC emissions over the four domains on a monthly scale. In Alaska, Siberia and northern Canada, SIF and dVCDBio,GC both show relatively lower interannual variabilities (SIF: CV = 1 %–9 %, dVCDBio,GC: CV = 1 %–2 %; note that CV stands for coefficient of variation) in comparison to wildfire-induced HCHO (CV = 8 %–13 %), suggesting that the high interannual variabilities of OMI HCHO VCD (CV = 10 %–16 %) in these domains are likely driven by wildfires instead of biogenic emissions.
0
Paper
Citation2
0
Save
0

Validation of formaldehyde products from three satellite retrievals (OMI SAO, OMPS-NPP SAO, and OMI BIRA) in the marine atmosphere with four seasons of Atmospheric Tomography Mission (ATom) aircraft observations

J. Liao et al.Jan 3, 2025
Abstract. Formaldehyde (HCHO) in the atmosphere is an intermediate product from the oxidation of methane and non-methane volatile organic compounds. In remote marine regions, HCHO variability is closely related to atmospheric oxidation capacity, and modeled HCHO in these regions is usually added as a global satellite HCHO background. Thus, it is important to understand and validate the levels of satellite HCHO over the remote oceans. Here we intercompare three satellite retrievals of total HCHO columns from the Ozone Monitoring Instrument Smithsonian Astrophysical Observatory (OMI SAO (v004)) algorithm, Ozone Mapping and Profiler Suite on Suomi National Polar-orbiting Partnership Smithsonian Astrophysical Observatory (OMPS-NPP SAO) algorithm, and Ozone Monitoring Instrument Belgian Institute for Space Aeronomy (OMI BIRA) algorithm and validate them against in situ observations from the NASA Atmospheric Tomography Mission (ATom) mission. All retrievals are correlated with ATom-integrated columns over remote oceans, with OMI SAO (v004) showing the best agreement. This is also reflected in the mean bias (MB) for OMI SAO (−0.73 ± 0.87) × 1015 molec. cm−2, OMPS SAO (−0.76 ± 0.88) × 1015 molec. cm−2, and OMI BIRA (−1.40 ± 1.11) × 1015 molec. cm−2. We recommend the OMI-SAO (v004) retrieval for remote-ocean atmosphere studies. Three satellite HCHO retrievals and in situ ATom columns all generally captured the spatial and seasonal distributions of HCHO in the remote-ocean atmosphere. Retrieval bias varies by latitude and season, but a persistent low bias is found in all products at high latitudes, and the general low bias is most severe for the OMI BIRA product. Examination of retrieval components reveals that slant column corrections have a larger impact on the retrievals over remote marine regions, while AMFs play a smaller role. This study informs us that the potential latitude-dependent biases in the retrievals require further investigation for improvement and should be considered when using marine HCHO satellite data, and vertical profiles from in situ instruments are crucial for validating satellite retrievals.