Summary Developing early maturing lentil has the potential to minimize yield losses, mainly during terminal drought. Whole‐genome resequencing (WGRS) based QTL‐seq identified the loci governing earliness in lentil. The genetic analysis for maturity duration provided a good fit to 3:1 segregation (F 2 ), indicating earliness as a recessive trait. WGRS of Globe Mutant (late parent), late‐flowering, and early‐flowering bulks (from RILs) has generated 1124.57, 1052.24 million raw and clean reads, respectively. The QTL‐Seq identified three QTLs ( LcqDTF3 . 1 , LcqDTF3 . 2 , and LcqDTF3 . 3 ) on chromosome 3 having 246244 SNPs and 15577 insertions/deletions (InDels) and 13 flowering pathway genes. Of these, 11 exhibited sequence variations between bulks and validation (qPCR) revealed a significant difference in the expression of nine candidate genes ( LcGA20oxG , LcFRI , LcLFY , LcSPL13a , Lcu . 2RBY . 3g060720 , Lcu . 2RBY . 3g062540 , Lcu . 2RBY . 3g062760 , LcELF3a , and LcEMF1 ). Interestingly, the LcELF3a gene showed significantly higher expression in late‐flowering genotype and exhibited substantial involvement in promoting lateness. Subsequently, an InDel marker (I‐SP‐383.9; LcELF3a gene) developed from LcqDTF3 . 2 QTL region showed 82.35% PVE (phenotypic variation explained) for earliness. The cloning, sequencing, and comparative analysis of the LcELF3a gene from both parents revealed 23 SNPs and InDels. Interestingly, a 52 bp deletion was recorded in the LcELF3a gene of L4775, predicted to cause premature termination of protein synthesis after 4 missense amino acids beyond the 351st amino acid due to the frameshift during translation. The identified InDel marker holds significant potential for breeding early maturing lentil varieties.