JQ
Jing Qin
Author with expertise in Deep Learning in Medical Image Analysis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
27
(37% Open Access)
Cited by:
6,216
h-index:
67
/
i10-index:
268
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Lequan Yu et al.Dec 21, 2016
Automated melanoma recognition in dermoscopy images is a very challenging task due to the low contrast of skin lesions, the huge intraclass variation of melanomas, the high degree of visual similarity between melanoma and non-melanoma lesions, and the existence of many artifacts in the image. In order to meet these challenges, we propose a novel method for melanoma recognition by leveraging very deep convolutional neural networks (CNNs). Compared with existing methods employing either low-level hand-crafted features or CNNs with shallower architectures, our substantially deeper networks (more than 50 layers) can acquire richer and more discriminative features for more accurate recognition. To take full advantage of very deep networks, we propose a set of schemes to ensure effective training and learning under limited training data. First, we apply the residual learning to cope with the degradation and overfitting problems when a network goes deeper. This technique can ensure that our networks benefit from the performance gains achieved by increasing network depth. Then, we construct a fully convolutional residual network (FCRN) for accurate skin lesion segmentation, and further enhance its capability by incorporating a multi-scale contextual information integration scheme. Finally, we seamlessly integrate the proposed FCRN (for segmentation) and other very deep residual networks (for classification) to form a two-stage framework. This framework enables the classification network to extract more representative and specific features based on segmented results instead of the whole dermoscopy images, further alleviating the insufficiency of training data. The proposed framework is extensively evaluated on ISBI 2016 Skin Lesion Analysis Towards Melanoma Detection Challenge dataset. Experimental results demonstrate the significant performance gains of the proposed framework, ranking the first in classification and the second in segmentation among 25 teams and 28 teams, respectively. This study corroborates that very deep CNNs with effective training mechanisms can be employed to solve complicated medical image analysis tasks, even with limited training data.
0

Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans

Jie-Zhi Cheng et al.Apr 15, 2016
Abstract This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features.
0

Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks

Qi Dou et al.Feb 11, 2016
Cerebral microbleeds (CMBs) are small haemorrhages nearby blood vessels. They have been recognized as important diagnostic biomarkers for many cerebrovascular diseases and cognitive dysfunctions. In current clinical routine, CMBs are manually labelled by radiologists but this procedure is laborious, time-consuming, and error prone. In this paper, we propose a novel automatic method to detect CMBs from magnetic resonance (MR) images by exploiting the 3D convolutional neural network (CNN). Compared with previous methods that employed either low-level hand-crafted descriptors or 2D CNNs, our method can take full advantage of spatial contextual information in MR volumes to extract more representative high-level features for CMBs, and hence achieve a much better detection accuracy. To further improve the detection performance while reducing the computational cost, we propose a cascaded framework under 3D CNNs for the task of CMB detection. We first exploit a 3D fully convolutional network (FCN) strategy to retrieve the candidates with high probabilities of being CMBs, and then apply a well-trained 3D CNN discrimination model to distinguish CMBs from hard mimics. Compared with traditional sliding window strategy, the proposed 3D FCN strategy can remove massive redundant computations and dramatically speed up the detection process. We constructed a large dataset with 320 volumetric MR scans and performed extensive experiments to validate the proposed method, which achieved a high sensitivity of 93.16% with an average number of 2.74 false positives per subject, outperforming previous methods using low-level descriptors or 2D CNNs by a significant margin. The proposed method, in principle, can be adapted to other biomarker detection tasks from volumetric medical data.
0

3D deeply supervised network for automated segmentation of volumetric medical images

Qi Dou et al.May 8, 2017
While deep convolutional neural networks (CNNs) have achieved remarkable success in 2D medical image segmentation, it is still a difficult task for CNNs to segment important organs or structures from 3D medical images owing to several mutually affected challenges, including the complicated anatomical environments in volumetric images, optimization difficulties of 3D networks and inadequacy of training samples. In this paper, we present a novel and efficient 3D fully convolutional network equipped with a 3D deep supervision mechanism to comprehensively address these challenges; we call it 3D DSN. Our proposed 3D DSN is capable of conducting volume-to-volume learning and inference, which can eliminate redundant computations and alleviate the risk of over-fitting on limited training data. More importantly, the 3D deep supervision mechanism can effectively cope with the optimization problem of gradients vanishing or exploding when training a 3D deep model, accelerating the convergence speed and simultaneously improving the discrimination capability. Such a mechanism is developed by deriving an objective function that directly guides the training of both lower and upper layers in the network, so that the adverse effects of unstable gradient changes can be counteracted during the training procedure. We also employ a fully connected conditional random field model as a post-processing step to refine the segmentation results. We have extensively validated the proposed 3D DSN on two typical yet challenging volumetric medical image segmentation tasks: (i) liver segmentation from 3D CT scans and (ii) whole heart and great vessels segmentation from 3D MR images, by participating two grand challenges held in conjunction with MICCAI. We have achieved competitive segmentation results to state-of-the-art approaches in both challenges with a much faster speed, corroborating the effectiveness of our proposed 3D DSN.
0

Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection

Qi Dou et al.Sep 26, 2016
Objective: False positive reduction is one of the most crucial components in an automated pulmonary nodule detection system, which plays an important role in lung cancer diagnosis and early treatment. The objective of this paper is to effectively address the challenges in this task and therefore to accurately discriminate the true nodules from a large number of candidates. Methods: We propose a novel method employing three-dimensional (3-D) convolutional neural networks (CNNs) for false positive reduction in automated pulmonary nodule detection from volumetric computed tomography (CT) scans. Compared with its 2-D counterparts, the 3-D CNNs can encode richer spatial information and extract more representative features via their hierarchical architecture trained with 3-D samples. More importantly, we further propose a simple yet effective strategy to encode multilevel contextual information to meet the challenges coming with the large variations and hard mimics of pulmonary nodules. Results: The proposed framework has been extensively validated in the LUNA16 challenge held in conjunction with ISBI 2016, where we achieved the highest competition performance metric (CPM) score in the false positive reduction track. Conclusion: Experimental results demonstrated the importance and effectiveness of integrating multilevel contextual information into 3-D CNN framework for automated pulmonary nodule detection in volumetric CT data. Significance: While our method is tailored for pulmonary nodule detection, the proposed framework is general and can be easily extended to many other 3-D object detection tasks from volumetric medical images, where the targeting objects have large variations and are accompanied by a number of hard mimics.
0

DCAN: Deep contour-aware networks for object instance segmentation from histology images

Hao Chen et al.Nov 16, 2016
In histopathological image analysis, the morphology of histological structures, such as glands and nuclei, has been routinely adopted by pathologists to assess the malignancy degree of adenocarcinomas. Accurate detection and segmentation of these objects of interest from histology images is an essential prerequisite to obtain reliable morphological statistics for quantitative diagnosis. While manual annotation is error-prone, time-consuming and operator-dependant, automated detection and segmentation of objects of interest from histology images can be very challenging due to the large appearance variation, existence of strong mimics, and serious degeneration of histological structures. In order to meet these challenges, we propose a novel deep contour-aware network (DCAN) under a unified multi-task learning framework for more accurate detection and segmentation. In the proposed network, multi-level contextual features are explored based on an end-to-end fully convolutional network (FCN) to deal with the large appearance variation. We further propose to employ an auxiliary supervision mechanism to overcome the problem of vanishing gradients when training such a deep network. More importantly, our network can not only output accurate probability maps of histological objects, but also depict clear contours simultaneously for separating clustered object instances, which further boosts the segmentation performance. Our method ranked the first in two histological object segmentation challenges, including 2015 MICCAI Gland Segmentation Challenge and 2015 MICCAI Nuclei Segmentation Challenge. Extensive experiments on these two challenging datasets demonstrate the superior performance of our method, surpassing all the other methods by a significant margin.
0

Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks

Hao Chen et al.Apr 21, 2015
Automatic localization of the standard plane containing complicated anatomical structures in ultrasound (US) videos remains a challenging problem. In this paper, we present a learning-based approach to locate the fetal abdominal standard plane (FASP) in US videos by constructing a domain transferred deep convolutional neural network (CNN). Compared with previous works based on low-level features, our approach is able to represent the complicated appearance of the FASP and hence achieve better classification performance. More importantly, in order to reduce the overfitting problem caused by the small amount of training samples, we propose a transfer learning strategy, which transfers the knowledge in the low layers of a base CNN trained from a large database of natural images to our task-specific CNN. Extensive experiments demonstrate that our approach outperforms the state-of-the-art method for the FASP localization as well as the CNN only trained on the limited US training samples. The proposed approach can be easily extended to other similar medical image computing problems, which often suffer from the insufficient training samples when exploiting the deep CNN to represent high-level features.
0

Volumetric ConvNets with Mixed Residual Connections for Automated Prostate Segmentation from 3D MR Images

Lequan Yu et al.Feb 10, 2017
Automated prostate segmentation from 3D MR images is very challenging due to large variations of prostate shape and indistinct prostate boundaries. We propose a novel volumetric convolutional neural network (ConvNet) with mixed residual connections to cope with this challenging problem. Compared with previous methods, our volumetric ConvNet has two compelling advantages. First, it is implemented in a 3D manner and can fully exploit the 3D spatial contextual information of input data to perform efficient, precise and volume-to-volume prediction. Second and more important, the novel combination of residual connections (i.e., long and short) can greatly improve the training efficiency and discriminative capability of our network by enhancing the information propagation within the ConvNet both locally and globally. While the forward propagation of location information can improve the segmentation accuracy, the smooth backward propagation of gradient flow can accelerate the convergence speed and enhance the discrimination capability. Extensive experiments on the open MICCAI PROMISE12 challenge dataset corroborated the effectiveness of the proposed volumetric ConvNet with mixed residual connections. Our method ranked the first in the challenge, outperforming other competitors by a large margin with respect to most of evaluation metrics. The proposed volumetric ConvNet is general enough and can be easily extended to other medical image analysis tasks, especially ones with limited training data.
0

Unsupervised Bidirectional Cross-Modality Adaptation via Deeply Synergistic Image and Feature Alignment for Medical Image Segmentation

Cheng Chen et al.Feb 11, 2020
Unsupervised domain adaptation has increasingly gained interest in medical image computing, aiming to tackle the performance degradation of deep neural networks when being deployed to unseen data with heterogeneous characteristics. In this work, we present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA) , to effectively adapt a segmentation network to an unlabeled target domain. Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives. In particular, we simultaneously transform the appearance of images across domains and enhance domain-invariance of the extracted features by leveraging adversarial learning in multiple aspects and with a deeply supervised mechanism. The feature encoder is shared between both adaptive perspectives to leverage their mutual benefits via end-to-end learning. We have extensively evaluated our method with cardiac substructure segmentation and abdominal multi-organ segmentation for bidirectional cross-modality adaptation between MRI and CT images. Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images, and outperforms the state-of-the-art domain adaptation approaches by a large margin.
0
Citation315
0
Save
0

SINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection

Xiaowei Hu et al.Oct 1, 2018
Vision-based vehicle detection approaches achieve incredible success in recent years with the development of deep convolutional neural network (CNN). However, existing CNN based algorithms suffer from the problem that the convolutional features are scale-sensitive in object detection task but it is common that traffic images and videos contain vehicles with a large variance of scales. In this paper, we delve into the source of scale sensitivity, and reveal two key issues: 1) existing RoI pooling destroys the structure of small scale objects, 2) the large intra-class distance for a large variance of scales exceeds the representation capability of a single network. Based on these findings, we present a scale-insensitive convolutional neural network (SINet) for fast detecting vehicles with a large variance of scales. First, we present a context-aware RoI pooling to maintain the contextual information and original structure of small scale objects. Second, we present a multi-branch decision network to minimize the intra-class distance of features. These lightweight techniques bring zero extra time complexity but prominent detection accuracy improvement. The proposed techniques can be equipped with any deep network architectures and keep them trained end-to-end. Our SINet achieves state-of-the-art performance in terms of accuracy and speed (up to 37 FPS) on the KITTI benchmark and a new highway dataset, which contains a large variance of scales and extremely small objects.
Load More