JL
Jiguang Li
Author with expertise in Interactions of Low-Energy Electrons with Matter and Atoms
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
2,383
h-index:
18
/
i10-index:
36
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Natural Orbitals and Targeted Non-Orthogonal Orbital Sets for Atomic Hyperfine Structure Multiconfiguration Calculations

Mingxuan Ma et al.May 29, 2024
Hyperfine structure constants have many applications, but are often hard to calculate accurately due to large and canceling contributions from different terms of the hyperfine interaction operator, and also from different closed and spherically symmetric core subshells that break up due to electron correlation effects. In multiconfiguration calculations, the wave functions are expanded in terms of configuration state functions (CSFs) built from sets of one-electron orbitals. The orbital sets are typically enlarged within the layer-by-layer approach. The calculations are energy-driven, and orbitals in each new layer of correlation orbitals are spatially localized in regions where the weighted total energy decreases the most, overlapping and breaking up different closed core subshells in an irregular pattern. As a result, hyperfine structure constants, computed as expectation values of the hyperfine operators, often show irregular or oscillating convergence patterns. Large orbital sets, and associated large CSF expansions, are needed to obtain converged values of the hyperfine structure constants. We analyze the situation for the states of the {2s22p3,2s22p23p,2s22p24p} odd and {2s22p23s,2s2p4,2s22p24s,2s22p23d} even configurations in N I, and show that the convergence with respect to the increasing sets of orbitals is radically improved by introducing separately optimized orbital sets targeted for describing the spin- and orbital-polarization effects of the 1s and 2s core subshells that are merged with, and orthogonalized against, the ordinary energy-optimized orbitals. In the layer-by-layer approach, the spectroscopic orbitals are kept frozen from the initial calculation and are not allowed to relax in response to the introduced layers of correlation orbitals. To compensate for this lack of variational freedom, the orbitals are transformed to natural orbitals prior to the final calculation based on single and double substitutions from an increased multireference set. The use of natural orbitals has an important impact on the states of the 2s22p23s configuration, bringing the corresponding hyperfine interaction constants in closer agreement with experiment. Relying on recent progress in methodology, the multiconfiguration calculations are based on configuration state function generators, cutting down the time for spin-angular integration by factors of up to 50, compared to ordinary calculations.
0

Development of Coupling Controlled Polymerizations by Adapter-ligation in Mate-pair Sequencing for Detection of Various Genomic Variants in One Single Assay

Zirui Dong et al.Aug 26, 2018
The diversity of disease presentations warrants one single assay for detection and delineation of various genomic disorders. Herein, we describe a gel-free and biotin-capture-free mate-pair method through coupling Controlled Polymerizations by Adapter-Ligation (CP-AL). We first demonstrated the feasibility and ease-of-use in monitoring DNA nick-translation and primer extension by limiting the nucleotide input. By coupling these two controlled polymerizations by a reported non-conventional adapter ligation reaction 3’ branch ligation, we evidenced that CP-AL significantly increased DNA-circularization efficiency (by 4-fold) and was applicable for different sequencing methods but at a faction of current cost. Its advantages were further demonstrated by fully elimination of small-insert-contaminated (by 39.3-fold) with a ~50% increment of physical coverage, and producing uniform genome/exome coverage and the lowest chimeric rate. It achieved single-nucleotide variants detection with sensitivity and specificity up to 97.3 and 99.7%, respectively, compared with data from small-insert libraries. In addition, this method can provide a comprehensive delineation of structural rearrangements, evidenced by a potential diagnosis in a patient with oligo-atheno-terato-spermia. Moreover, it enables accurate mutation identification by integration of genomic variants from different aberration types. Overall, it provides a potential single-integrated solution for detecting various genomic variants, facilitating a genetic diagnosis in human diseases.