TC
Thomas Collett
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(100% Open Access)
Cited by:
2,412
h-index:
45
/
i10-index:
88
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

H0LiCOW – V. New COSMOGRAIL time delays of HE 0435−1223:H0to 3.8 per cent precision from strong lensing in a flat ΛCDM model

V. Bonvin et al.Nov 19, 2016
We present a new measurement of the Hubble Constant H0 and other cosmological parameters based on the joint analysis of three multiply imaged quasar systems with measured gravitational time delays. First, we measure the time delay of HE 0435−1223 from 13-yr light curves obtained as part of the COSMOGRAIL project. Companion papers detail the modelling of the main deflectors and line-of-sight effects, and how these data are combined to determine the time-delay distance of HE 0435−1223. Crucially, the measurements are carried out blindly with respect to cosmological parameters in order to avoid confirmation bias. We then combine the time-delay distance of HE 0435−1223 with previous measurements from systems B1608+656 and RXJ1131−1231 to create a Time Delay Strong Lensing probe (TDSL). In flat Λ cold dark matter (ΛCDM) with free matter and energy density, we find H0|$=71.9^{+2.4}_{-3.0}\ {\rm km\, s^{-1}\, Mpc^{-1}}$| and |$\Omega _{\Lambda }=0.62^{+0.24}_{-0.35}$|⁠. This measurement is completely independent of, and in agreement with, the local distance ladder measurements of H0. We explore more general cosmological models combining TDSL with other probes, illustrating its power to break degeneracies inherent to other methods. The joint constraints from TDSL and Planck are H0 = |$69.2_{-2.2}^{+1.4}\ {\rm km\, s^{-1}\, Mpc^{-1}}$|⁠, |$\Omega _{\Lambda }=0.70_{-0.01}^{+0.01}$| and |$\Omega _{\rm k}=0.003_{-0.006}^{+0.004}$| in open ΛCDM and H0|$=79.0_{-4.2}^{+4.4}\ {\rm km\, s^{-1}\, Mpc^{-1}}$|⁠, |$\Omega _{\rm de}=0.77_{-0.03}^{+0.02}$| and |$w=-1.38_{-0.16}^{+0.14}$| in flat wCDM. In combination with Planck and baryon acoustic oscillation data, when relaxing the constraints on the numbers of relativistic species we find Neff = |$3.34_{-0.21}^{+0.21}$| in NeffΛCDM and when relaxing the total mass of neutrinos we find Σmν ≤ 0.182 eV in mνΛCDM. Finally, in an open wCDM in combination with Planck and cosmic microwave background lensing, we find H0|$=77.9_{-4.2}^{+5.0}\ {\rm km\, s^{-1}\, Mpc^{-1}}$|⁠, |$\Omega _{\rm de}=0.77_{-0.03}^{+0.03}$|⁠, |$\Omega _{\rm k}=-0.003_{-0.004}^{+0.004}$| and |$w=-1.37_{-0.23}^{+0.18}$|⁠.
0

H0LiCOW – I. H0 Lenses in COSMOGRAIL's Wellspring: program overview

S. Suyu et al.Feb 24, 2017
Strong gravitational lens systems with time delays between the multiple images allow measurements of time-delay distances, which are primarily sensitive to the Hubble constant that is key to probing dark energy, neutrino physics, and the spatial curvature of the Universe, as well as discovering new physics. We present H0LiCOW ($H_0$ Lenses in COSMOGRAIL's Wellspring), a program that aims to measure $H_0$ with $<3.5\%$ uncertainty from five lens systems (B1608+656, RXJ1131-1231, HE0435-1223, WFI2033-4723 and HE1104-1805). We have been acquiring (1) time delays through COSMOGRAIL and Very Large Array monitoring, (2) high-resolution Hubble Space Telescope imaging for the lens mass modeling, (3) wide-field imaging and spectroscopy to characterize the lens environment, and (4) moderate-resolution spectroscopy to obtain the stellar velocity dispersion of the lenses for mass modeling. In cosmological models with one-parameter extension to flat $\Lambda$CDM, we expect to measure $H_0$ to $<3.5\%$ in most models, spatial curvature $\Omega_{\rm k}$ to 0.004, $w$ to 0.14, and the effective number of neutrino species to 0.2 (1$\sigma$ uncertainties) when combined with current CMB experiments. These are, respectively, a factor of $\sim15$, $\sim2$, and $\sim1.5$ tighter than CMB alone. Our data set will further enable us to study the stellar initial mass function of the lens galaxies, and the co-evolution of supermassive black holes and their host galaxies. This program will provide a foundation for extracting cosmological distances from the hundreds of time-delay lenses that are expected to be discovered in current and future surveys.
0

TDCOSMO

Simon Birrer et al.Oct 15, 2020
The H0LiCOW collaboration inferred via strong gravitational lensing time delays a Hubble constant value of H 0 = 73.3 −1.8 +1.7 km s −1 Mpc −1 , describing deflector mass density profiles by either a power-law or stars (constant mass-to-light ratio) plus standard dark matter halos. The mass-sheet transform (MST) that leaves the lensing observables unchanged is considered the dominant source of residual uncertainty in H 0 . We quantify any potential effect of the MST with a flexible family of mass models, which directly encodes it, and they are hence maximally degenerate with H 0 . Our calculation is based on a new hierarchical Bayesian approach in which the MST is only constrained by stellar kinematics. The approach is validated on mock lenses, which are generated from hydrodynamic simulations. We first applied the inference to the TDCOSMO sample of seven lenses, six of which are from H0LiCOW, and measured H 0 = 74.5 −6.1 +5.6 km s −1 Mpc −1 . Secondly, in order to further constrain the deflector mass density profiles, we added imaging and spectroscopy for a set of 33 strong gravitational lenses from the Sloan Lens ACS (SLACS) sample. For nine of the 33 SLAC lenses, we used resolved kinematics to constrain the stellar anisotropy. From the joint hierarchical analysis of the TDCOSMO+SLACS sample, we measured H 0 = 67.4 −3.2 +4.1 km s −1 Mpc −1 . This measurement assumes that the TDCOSMO and SLACS galaxies are drawn from the same parent population. The blind H0LiCOW, TDCOSMO-only and TDCOSMO+SLACS analyses are in mutual statistical agreement. The TDCOSMO+SLACS analysis prefers marginally shallower mass profiles than H0LiCOW or TDCOSMO-only. Without relying on the form of the mass density profile used by H0LiCOW, we achieve a ∼5% measurement of H 0 . While our new hierarchical analysis does not statistically invalidate the mass profile assumptions by H0LiCOW – and thus the H 0 measurement relying on them – it demonstrates the importance of understanding the mass density profile of elliptical galaxies. The uncertainties on H 0 derived in this paper can be reduced by physical or observational priors on the form of the mass profile, or by additional data.
0

THE POPULATION OF GALAXY–GALAXY STRONG LENSES IN FORTHCOMING OPTICAL IMAGING SURVEYS

Thomas CollettSep 16, 2015
Ongoing and future imaging surveys represent significant improvements in depth, area, and seeing compared to current data sets. These improvements offer the opportunity to discover up to three orders of magnitude more galaxy–galaxy strong lenses than are currently known. In this work we forecast the number of lenses that will be discoverable in forthcoming surveys and simulate their properties. We generate a population of statistically realistic strong lenses and simulate observations of this population for the Dark Energy Survey (DES), the Large Synoptic Survey Telescope (LSST), and Euclid surveys. We verify our model against the galaxy-scale lens search of the Canada–France–Hawaii Telescope Legacy Survey, predicting 250 discoverable lenses compared to 220 found by Gavazzi et al. The predicted Einstein radius distribution is also remarkably similar to that found by Sonnenfeld et al. For future surveys we find that, assuming Poisson limited lens galaxy subtraction, searches of the DES, LSST, and Euclid data sets should discover 2400, 120000, and 170000 galaxy–galaxy strong lenses, respectively. Finders using blue-minus-red () difference imaging for lens subtraction can discover 1300 and 62000 lenses in DES and LSST. The uncertainties on the model are dominated by the high-redshift source population, which typically gives fractional errors on the discoverable lens number at the level of tens of percent. We find that doubling the signal-to-noise ratio required for a lens to be detectable approximately halves the number of detectable lenses in each survey, indicating the importance of understanding the selection function and the sensitivity of future lens finders in interpreting strong lens statistics. We make our population forecasting and simulated observation codes publicly available so that the selection function of strong lens finders can easily be calibrated.
0
Citation283
0
Save
0

COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA

S. Suyu et al.Jun 5, 2014
Under the assumption of a flat ΛCDM cosmology, recent data from the Planck satellite point toward a Hubble constant that is in tension with that measured by gravitational lens time delays and by the local distance ladder. Prosaically, this difference could arise from unknown systematic uncertainties in some of the measurements. More interestingly—if systematics were ruled out—resolving the tension would require a departure from the flat ΛCDM cosmology, introducing, for example, a modest amount of spatial curvature, or a non-trivial dark energy equation of state. To begin to address these issues, we present an analysis of the gravitational lens RXJ1131−1231 that is improved in one particular regard: we examine the issue of systematic error introduced by an assumed lens model density profile. We use more flexible gravitational lens models with baryonic and dark matter components, and find that the exquisite Hubble Space Telescope image with thousands of intensity pixels in the Einstein ring and the stellar velocity dispersion of the lens contain sufficient information to constrain these more flexible models. The total uncertainty on the time-delay distance is 6.6% for a single system. We proceed to combine our improved time-delay distance measurement with the WMAP9 and Planck posteriors. In an open ΛCDM model, the data for RXJ1131−1231 in combination with Planck favor a flat universe with (68% credible interval (CI)). In a flat wCDM model, the combination of RXJ1131−1231 and Planck yields (68% CI).
0

First cosmological results using Type Ia supernovae from the Dark Energy Survey: measurement of the Hubble constant

E. Macaulay et al.Apr 8, 2019
We present an improved measurement of the Hubble constant (H_0) using the 'inverse distance ladder' method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 < z < 0.85 to existing distance measurements of 122 low redshift (z < 0.07) SNe Ia (Low-z) and measurements of Baryon Acoustic Oscillations (BAOs). Whereas traditional measurements of H_0 with SNe Ia use a distance ladder of parallax and Cepheid variable stars, the inverse distance ladder relies on absolute distance measurements from the BAOs to calibrate the intrinsic magnitude of the SNe Ia. We find H_0 = 67.8 +/- 1.3 km s-1 Mpc-1 (statistical and systematic uncertainties, 68% confidence). Our measurement makes minimal assumptions about the underlying cosmological model, and our analysis was blinded to reduce confirmation bias. We examine possible systematic uncertainties and all are below the statistical uncertainties. Our H_0 value is consistent with estimates derived from the Cosmic Microwave Background assuming a LCDM universe (Planck Collaboration et al. 2018).
0

Lensed Type Ia Supernova “Encore” at z = 2: The First Instance of Two Multiply Imaged Supernovae in the Same Host Galaxy

Justin Pierel et al.May 29, 2024
Abstract A bright ( m F150W,AB = 24 mag), z = 1.95 supernova (SN) candidate was discovered in JWST/NIRCam imaging acquired on 2023 November 17. The SN is quintuply imaged as a result of strong gravitational lensing by a foreground galaxy cluster, detected in three locations, and remarkably is the second lensed SN found in the same host galaxy. The previous lensed SN was called “Requiem,” and therefore the new SN is named “Encore.” This makes the MACS J0138.0−2155 cluster the first known system to produce more than one multiply imaged SN. Moreover, both SN Requiem and SN Encore are Type Ia SNe (SNe Ia), making this the most distant case of a galaxy hosting two SNe Ia. Using parametric host fitting, we determine the probability of detecting two SNe Ia in this host galaxy over a ∼10 yr window to be ≈3%. These observations have the potential to yield a Hubble constant ( H 0 ) measurement with ∼10% precision, only the third lensed SN capable of such a result, using the three visible images of the SN. Both SN Requiem and SN Encore have a fourth image that is expected to appear within a few years of ∼2030, providing an unprecedented baseline for time-delay cosmography.
0
Citation4
0
Save
0

Find the haystacks, then look for needles: The rate of strongly lensed supernovae in galaxy-galaxy strong gravitational lenses

Ana Murieta et al.Nov 5, 2024
Abstract The time delay between appearances of multiple images of a gravitationally lensed supernova (glSN) is sensitive to the Hubble constant, H0. As well as time delays, a lensed host galaxy is needed to enable precise inference of H0. In this work we investigate the connection between discoverable lensed transients and their host galaxies. We find that the Legacy Survey of Space and Time (LSST) will discover at least 90 glSNe per year, of which 54% will also have a strongly lensed host. The rates are uncertain by approximately 30 % depending primarily on the choice of the unlensed SN population and uncertainties in the redshift evolution of the deflector population, but the fraction of glSNe with a lensed host is consistently around a half. LSST will discover around 20 glSNe per year in systems that could plausibly have been identified by Euclid as galaxy-galaxy lenses before the discovery of the glSN. Such systems have preferentially longer time delays and therefore are well suited for cosmography. We define a golden sample of glSNe Ia with time delays over 10 days, image separations greater than 0.8 arcseconds, and a multiply imaged host. For this golden sample, we find $91\%$ occur in systems that should already be discoverable as galaxy-galaxy lenses in Euclid. For cosmology with glSNe, monitoring Euclid lenses is a plausible alternative to searching the entire LSST alert stream.
0

How to break the mass sheet degeneracy with the lightcurves of microlensed Type Ia supernovae

Luke Weisenbach et al.Jun 5, 2024
ABSTRACT The standardizable nature of gravitationally lensed Type Ia supernovae (glSNe Ia) makes them an attractive target for time-delay cosmography, since a source with known luminosity breaks the mass sheet degeneracy. It is known that microlensing by stars in the lensing galaxy can add significant stochastic uncertainty to the unlensed luminosity, which is often much larger than the intrinsic scatter of the Type Ia population. In this work, we show how the temporal microlensing variations as the supernova (SN) disc expands can be used to improve the standardization of glSNe Ia. We find that SNe are standardizable if they do not cross caustics as they expand. We estimate that this will be the case for ≈6 doubly imaged systems and ≈0.3 quadruply imaged systems per year from the Vera Rubin Observatory (LSST). At the end of the 10 yr LSST survey, these systems should enable us to test for systematics in H0 due to the mass sheet degeneracy at the $1.00^{+0.07}_{-0.06}$ per cent level, or 1.8 ± 0.2 per cent if we can only extract time delays from the third of systems with counter-images brighter than i = 24 mag.
Load More