FW
Faxing Wang
Author with expertise in Lithium-ion Battery Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
20
(40% Open Access)
Cited by:
5,365
h-index:
54
/
i10-index:
99
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Electrode materials for aqueous asymmetric supercapacitors

Faxing Wang et al.Jan 1, 2013
An asymmetric supercapacitor (ASC) is a supercapacitor based on two different electrode materials. One electrode is based on redox (Faradic) reactions with or without non-faradic reactions, and the other one is mostly based on electric double-layer (non-Faradic or electrostatic) absorption/desportion. Aqueous electrolytes have higher ionic conductivity, larger capacitance and better safety than the organic electrolytes. Herein, some key electrode materials for aqueous ASCs are primarily reviewed, which provide a new direction for power sources to have higher energy density at high power densities, compared with traditional capacitors. Their negative electrode materials include carbonaceous materials (porous carbons, carbon nanotubes and graphene), oxides (V2O5 and MoO3) and their composites, and their positive electrode materials include carbonaceous materials, oxides (RuO2, MnO2, MoO3, V2O5, PbO2, Co3O4), Ni(OH)2, intercalation compounds (LiCoO2, LiMn2O4, Li[NiCoMn]1/3O2, NaMnO2 and KMnO2). We describe the latest work on these electrode materials, and a particular focus is directed to the fabrication and electrochemical performance of various nanostructured electrode materials and some assembled ASCs. Finally, the future trends and prospects on advanced energy storage materials are suggested.
0

High‐Performance Electrocatalytic Conversion of N2 to NH3 Using Oxygen‐Vacancy‐Rich TiO2 In Situ Grown on Ti3C2Tx MXene

Yanfeng Fang et al.Feb 28, 2019
Abstract To achieve the energy‐effective ammonia (NH 3 ) production via the ambient‐condition electrochemical N 2 reduction reaction (NRR), it is vital to ingeniously design an efficient electrocatalyst assembling the features of abundant surface deficiency, good dispersibility, high conductivity, and large surface specific area (SSA) via a simple way. Inspired by the fact that the MXene contains thermodynamically metastable marginal transition metal atoms, the oxygen‐vacancy‐rich TiO 2 nanoparticles (NPs) in situ grown on the Ti 3 C 2 T x nanosheets (TiO 2 /Ti 3 C 2 T x ) are prepared via a one‐step ethanol‐thermal treatment of the Ti 3 C 2 T x MXene. The oxygen vacancies act as the main active sites for the NH 3 synthesis. The highly conductive interior untreated Ti 3 C 2 T x nanosheets could not only facilitate the electron transport but also avoid the self‐aggregation of the TiO 2 NPs. Meanwhile, the TiO 2 NPs generation could enhance the SSA of the Ti 3 C 2 T x in return. Accordingly, the as‐prepared electrocatalyst exhibits an NH 3 yield of 32.17 µg h −1 mg −1 cat. at −0.55 V versus reversible hydrogen electrode (RHE) and a remarkable Faradaic efficiency of 16.07% at −0.45 V versus RHE in 0.1 m HCl, placing it as one of the most promising NRR electrocatalysts. Moreover, the density functional theory calculations confirm the lowest NRR energy barrier (0.40 eV) of TiO 2 (101)/Ti 3 C 2 T x compared with Ti 3 C 2 T x or TiO 2 (101) alone.
Load More