BS
Brett Savoie
Author with expertise in Conducting Polymer Research
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(44% Open Access)
Cited by:
2,203
h-index:
33
/
i10-index:
58
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Two-dimensional halide perovskite lateral epitaxial heterostructures

Enzheng Shi et al.Apr 29, 2020
Epitaxial heterostructures based on oxide perovskites and III–V, II–VI and transition metal dichalcogenide semiconductors form the foundation of modern electronics and optoelectronics1–7. Halide perovskites—an emerging family of tunable semiconductors with desirable properties—are attractive for applications such as solution-processed solar cells, light-emitting diodes, detectors and lasers8–15. Their inherently soft crystal lattice allows greater tolerance to lattice mismatch, making them promising for heterostructure formation and semiconductor integration16,17. Atomically sharp epitaxial interfaces are necessary to improve performance and for device miniaturization. However, epitaxial growth of atomically sharp heterostructures of halide perovskites has not yet been achieved, owing to their high intrinsic ion mobility, which leads to interdiffusion and large junction widths18–21, and owing to their poor chemical stability, which leads to decomposition of prior layers during the fabrication of subsequent layers. Therefore, understanding the origins of this instability and identifying effective approaches to suppress ion diffusion are of great importance22–26. Here we report an effective strategy to substantially inhibit in-plane ion diffusion in two-dimensional halide perovskites by incorporating rigid π-conjugated organic ligands. We demonstrate highly stable and tunable lateral epitaxial heterostructures, multiheterostructures and superlattices. Near-atomically sharp interfaces and epitaxial growth are revealed by low-dose aberration-corrected high-resolution transmission electron microscopy. Molecular dynamics simulations confirm the reduced heterostructure disorder and larger vacancy formation energies of the two-dimensional perovskites in the presence of conjugated ligands. These findings provide insights into the immobilization and stabilization of halide perovskite semiconductors and demonstrate a materials platform for complex and molecularly thin superlattices, devices and integrated circuits. An epitaxial growth strategy that improves the stability of two-dimensional halide perovskites by inhibiting ion diffusion in their heterostructures using rigid π-conjugated ligands is demonstrated, and shows near-atomically sharp interfaces.
0

Unequal Partnership: Asymmetric Roles of Polymeric Donor and Fullerene Acceptor in Generating Free Charge

Brett Savoie et al.Jan 24, 2014
Natural photosynthetic complexes accomplish the rapid conversion of photoexcitations into spatially separated electrons and holes through precise hierarchical ordering of chromophores and redox centers. In contrast, organic photovoltaic (OPV) cells are poorly ordered, utilize only two different chemical potentials, and the same materials that absorb light must also transport charge; yet, some OPV blends achieve near-perfect quantum efficiency. Here we perform electronic structure calculations on large clusters of functionalized fullerenes of different size and ordering, predicting several features of the charge generation process, outside the framework of conventional theories but clearly observed in ultrafast electro-optical experiments described herein. We show that it is the resonant coupling of photogenerated singlet excitons to a high-energy manifold of fullerene electronic states that enables efficient charge generation, bypassing localized charge-transfer states. In contrast to conventional views, our findings suggest that fullerene cluster size, concentration, and dimensionality control charge generation efficiency, independent of exciton delocalization.
0

Conformational Order in Aggregates of Conjugated Polymers

Nicholas Jackson et al.Apr 29, 2015
With the abundant variety and increasing chemical complexity of conjugated polymers proliferating the field of organic semiconductors, it has become increasingly important to correlate the polymer molecular structure with its mesoscale conformational and morphological attributes. For instance, it is unknown which combinations of chemical moieties and periodicities predictably produce mesoscale ordering. Interestingly, not all ordered morphologies result in efficient devices. In this work we have parametrized accurate classical force-fields and used these to compute the conformational and aggregation characteristics of single strands of common conjugated polymers. Molecular dynamics trajectories are shown to reproduce experimentally observed polymeric ordering, concluding that efficient organic photovoltaic devices span a range of polymer conformational classes, and suggesting that the solution-phase morphologies have far-reaching effects. Encouragingly, these simulations indicate that despite the wide-range of conformational classes present in successful devices, local molecular ordering, and not long-range crystallinity, appears to be the necessary requirement for efficient devices. Finally, we examine what makes a "good" solvent for conjugated polymers, concluding that dispersive π-electron solvent-polymer interactions, and not the electrostatic potential of the backbone interacting with the solvent, are what primarily determine a polymer's solubility in a particular solvent, and consequently its morphological characteristics.