XL
Xinqiang Liang
Author with expertise in Nanotechnology and Imaging for Cancer Therapy and Diagnosis
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
1
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Chemodynamic PtMn Nanocubes for Effective Photothermal ROS Storm a Key Anti-Tumor Therapy in-vivo

Sheng Wang et al.May 1, 2024
Background: Chemodynamic therapy (CDT) is a new treatment approach that is triggered by endogenous stimuli in specific intracellular conditions for generating hydroxyl radicals. However, the efficiency of CDT is severely limited by Fenton reaction agents and harsh reaction conditions. Methods: Bimetallic PtMn nanocubes were rationally designed and simply synthesized through a one-step high-temperature pyrolysis process by controlling both the nucleation process and the subsequent crystal growth stage. The polyethylene glycol was modified to enhance biocompatibility. Results: Benefiting from the alloying of Pt nanocubes with Mn doping, the structure of the electron cloud has changed, resulting in different degrees of the shift in electron binding energy, resulting in the increasing of Fenton reaction activity. The PtMn nanocubes could catalyze endogenous hydrogen peroxide to toxic hydroxyl radicals in mild acid. Meanwhile, the intrinsic glutathione (GSH) depletion activity of PtMn nanocubes consumed GSH with the assistance of Mn 3+ /Mn 2+ . Upon 808 nm laser irradiation, mild temperature due to the surface plasmon resonance effect of Pt metal can also enhance the Fenton reaction. Conclusion: PtMn nanocubes can not only destroy the antioxidant system via efficient reactive oxygen species generation and continuous GSH consumption but also propose the photothermal effect of noble metal for enhanced Fenton reaction activity. Keywords: noble metal, Mn-doping, Fenton reaction, photothermal effect, chemodynamic therapy
0
Citation1
0
Save
0

Prussian Blue‐Derived Nanocomposite Synergized with Calcium Overload for Three‐Mode ROS Outbreak Generation to Enhance Oncotherapy

Wenting Xu et al.Jun 19, 2024
Abstract Calcium overload can lead to tumor cell death. However, because of the powerful calcium channel excretory system within tumor cells, simplistic calcium overloads do not allow for an effective antitumor therapy. Hence, the nanoparticles are created with polyethylene glycol (PEG) donor‐modified calcium phosphate (CaP)‐coated, manganese‐doped hollow mesopores Prussian blue (MMPB) encapsulating glucose oxidase (GOx), called GOx@MMPB@CaP‐PEG (GMCP). GMCP with a three‐mode enhancement of intratumor reactive oxygen species (ROS) levels is designed to increase the efficiency of the intracellular calcium overload in tumor cells to enhance its anticancer efficacy. The released exogenous Ca 2+ and the production of cytotoxic ROS resulting from the perfect circulation of the three‐mode ROS outbreak generation that Fenton/Fenton‐like reaction and consumption of glutathione from Fe 2+ /Fe 3+ and Mn 2+ /Mn 3+ circle, and amelioration of hypoxia from MMPB‐guided and GOx‐mediated starvation therapy. Photothermal efficacy‐induced heat generation owing to MMPB accelerates the above reactions. Furthermore, abundant ROS contribute to damage to mitochondria, and the calcium channels of efflux Ca 2+ are inhibited, resulting in a calcium overload. Calcium overload further increases ROS levels and promotes apoptosis of tumor cells to achieve excellent therapy.