A new version of ResearchHub is available.Try it now
KH
Kenta Hongo
Author with expertise in Two-Dimensional Materials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
333
h-index:
23
/
i10-index:
49
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm

S. Wu et al.Jun 21, 2019
Abstract The use of machine learning in computational molecular design has great potential to accelerate the discovery of innovative materials. However, its practical benefits still remain unproven in real-world applications, particularly in polymer science. We demonstrate the successful discovery of new polymers with high thermal conductivity, inspired by machine-learning-assisted polymer chemistry. This discovery was made by the interplay between machine intelligence trained on a substantially limited amount of polymeric properties data, expertise from laboratory synthesis and advanced technologies for thermophysical property measurements. Using a molecular design algorithm trained to recognize quantitative structure—property relationships with respect to thermal conductivity and other targeted polymeric properties, we identified thousands of promising hypothetical polymers. From these candidates, three were selected for monomer synthesis and polymerization because of their synthetic accessibility and their potential for ease of processing in further applications. The synthesized polymers reached thermal conductivities of 0.18–0.41 W/mK, which are comparable to those of state-of-the-art polymers in non-composite thermo-plastics.
0

Substitutional Doping Strategies for Fermi Level Depinning and Enhanced Interface Quality in WS2-Metal Contacts

Abdul Ghaffar et al.May 31, 2024
Addressing contact resistance challenges at the interface between metals and transition-metal dichalcogenides (TMDs) remains a complex task due to the persistent Fermi level pinning (FLP) effect near the conduction band minima. Various methods have been explored to mitigate FLP by reducing the chemical interaction between metals and semiconductors. However, these approaches often lead to undesirable consequences, such as reduced adhesion and increased tunneling resistance, ultimately resulting in poor interface quality. A promising solution to overcome these limitations lies in the use of substitutionally doped semiconductor/metal interfaces. We conducted a thorough investigation using first-principles calculations, focusing on S-substituted WS2-metal interfaces involving commonly used metals such as Ag, Au, Cu, Pd, Pt, Sc, and Ti. Additionally, we explored the incorporation of nonmetallic dopants, including C, Cl, N, F, O, and P, into the WS2 surface. Our analysis revolved around several critical parameters, including adhesion strength, Schottky barrier height (SBH), tunnel barrier, charge transfer across the interface, and interface dipole formation. Our study demonstrated that substitutionally doped interfaces can undergo Fermi level depinning while maintaining an enhanced adhesion strength and lower tunneling barrier at the interface. This finding marks a departure from existing methods and offers a promising avenue for inducing p-type contact polarity and addressing contact resistance challenges in TMDs.