ZH
Zuohua Huang
Author with expertise in Chemical Kinetics of Combustion Processes
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
37
(11% Open Access)
Cited by:
3,857
h-index:
83
/
i10-index:
463
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures

Zuohua Huang et al.Apr 18, 2006
Laminar flame characteristics of natural gas–hydrogen–air flames were studied in a constant-volume bomb at normal temperature and pressure. Laminar burning velocities and Markstein lengths were obtained at various ratios of hydrogen to natural gas (volume fraction from 0 to 100%) and equivalence ratios (ϕ from 0.6 to 1.4). The influence of stretch rate on flame was also analyzed. The results show that, for lean mixture combustion, the flame radius increases with time but the increasing rate decreases with flame expansion for natural gas and for mixtures with low hydrogen fractions, while at high hydrogen fractions, there exists a linear correlation between flame radius and time. For rich mixture combustion, the flame radius shows a slowly increasing rate at early stages of flame propagation and a quickly increasing rate at late stages of flame propagation for natural gas and for mixtures with low hydrogen fractions, and there also exists a linear correlation between flame radius and time for mixtures with high hydrogen fractions. Combustion at stoichiometric mixture demonstrates the linear relationship between flame radius and time for natural gas–air, hydrogen–air, and natural gas–hydrogen–air flames. Laminar burning velocities increase exponentially with the increase of hydrogen fraction in mixtures, while the Markstein length decreases and flame instability increases with the increase of hydrogen fractions in mixture. For a fixed hydrogen fraction, the Markstein number shows an increase and flame stability increases with the increase of equivalence ratios. Based on the experimental data, a formula for calculating the laminar burning velocities of natural gas–hydrogen–air flames is proposed.
0

Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames

Erjiang Hu et al.Apr 27, 2009
An experimental and numerical study on laminar burning characteristics of the premixed methane–hydrogen–air flames was conducted at room temperature and atmospheric pressure. The unstretched laminar burning velocity and the Markstein length were obtained over a wide range of equivalence ratios and hydrogen fractions. Moreover, for further understanding of the effect of hydrogen addition on the laminar burning velocity, the sensitivity analysis and flame structure were performed. The results show that the unstretched laminar burning velocity is increased, and the peak value of the unstretched laminar burning velocity shifts to the richer mixture side with the increase of hydrogen fraction. Three regimes are identified depending on the hydrogen fraction in the fuel blend. They are: the methane-dominated combustion regime where hydrogen fraction is less than 60%; the transition regime where hydrogen fraction is between 60% and 80%; and the methane-inhibited hydrogen combustion regime where hydrogen fraction is larger than 80%. In both the methane-dominated combustion regime and the methane-inhibited hydrogen combustion regime, the laminar burning velocity increases linearly with the increase of hydrogen fraction. However, in the transition regime, the laminar burning velocity increases exponentially with the increase of hydrogen fraction in the fuel blends. The Markstein length is increased with the increase of equivalence ratio and is decreased with the increase of hydrogen fraction. Enhancement of chemical reaction with hydrogen addition is regarded as the increase of H, O and OH radical mole fractions in the flame. Strong correlation is found between the burning velocity and the maximum radical concentrations of H and OH in the reaction zone of the premixed flames.
0

An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements

Chong‐Wen Zhou et al.Sep 10, 2018
Ignition delay times for 1,3-butadiene oxidation were measured in five different shock tubes and in a rapid compression machine (RCM) at thermodynamic conditions relevant to practical combustors. The ignition delay times were measured at equivalence ratios of 0.5, 1.0, and 2.0 in ‘air’ at pressures of 10, 20 and 40 atm in both the shock tubes and in the RCM. Additional measurements were made at equivalence ratios of 0.3, 0.5, 1.0 and 2.0 in argon, at pressures of 1, 2 and 4 atm in a number of different shock tubes. Laminar flame speeds were measured at unburnt temperatures of 295 K, 359 K and 399 K at atmospheric pressure in the equivalence ratio range of 0.6–1.7, and at a pressure of 5 atm at equivalence ratios in the range 0.6–1.4. These experimental data were then used as validation targets for a newly developed detailed chemical kinetic mechanism for 1,3-butadiene oxidation. A detailed chemical kinetic mechanism (AramcoMech 3.0) has been developed to describe the combustion of 1,3-butadiene and is validated by a comparison of simulation results to the new experimental measurements. Important reaction classes highlighted via sensitivity analyses at different temperatures include: (a) ȮH radical addition to the double bonds on 1,3-butadiene and their subsequent reactions. The branching ratio for addition to the terminal and central double bonds is important in determining the reactivity at low-temperatures. The alcohol-alkene radical adducts that are subsequently formed can either react with HȮ2 radicals in the case of the resonantly stabilized radicals or O2 for other radicals. (b) HȮ2 radical addition to the double bonds in 1,3-butadiene and their subsequent reactions. This reaction class is very important in determining the fuel reactivity at low and intermediate temperatures (600–900 K). Four possible addition reactions have been considered. (c) 3Ö atom addition to the double bonds in 1,3-butadiene is very important in determining fuel reactivity at intermediate to high temperatures (> 800 K). In this reaction class, the formation of two stable molecules, namely CH2O + allene, inhibits reactivity whereas the formation of two radicals, namely Ċ2H3 and ĊH2CHO, promotes reactivity. (d) Ḣ atom addition to the double bonds in 1,3-butadiene is very important in the prediction of laminar flame speeds. The formation of ethylene and a vinyl radical promotes reactivity and it is competitive with H-atom abstraction by Ḣ atoms from 1,3-butadiene to form the resonantly stabilized Ċ4H5-i radical and H2 which inhibits reactivity. Ab initio chemical kinetics calculations were carried out to determine the thermochemistry properties and rate constants for some of the important species and reactions involved in the model development. The present model is a decent first model that captures most of the high-temperature IDTs and flame speeds quite well, but there is room for considerable improvement especially for the lower temperature chemistry before a robust model is developed.
0

Emission characteristics of a spark-ignition engine fuelled with gasoline-n-butanol blends in combination with EGR

Xiaolei Gu et al.Dec 7, 2011
An experimental study was conducted in a port fuel-injection, spark-ignition engine fuelled with blends of gasoline and n-butanol at different spark timings and EGR rates. The effect of spark timing, blend ratio and EGR rate on the emission characteristics (unburned hydrocarbon (HC), carbon monoxide (CO), nitrogen oxide (NOx) and particulate size and distribution) was analyzed. BSFC (Brake specific fuel consumption) and MBT (maximum brake torque timing) at full load were also discussed. Results show that the blends of gasoline and n-butanol decrease engine specific HC, CO and NOx emissions compared to those of gasoline. Pure n-butanol increases engine specific HC and CO emissions and decreases NOx and particle number concentration compared to those of gasoline. n-Butanol addition can decrease particle number concentration emissions compared with that of gasoline. Advancing spark timing increases engine specific HC, NOx emissions and particle number concentration while it decreases engine specific CO emissions. EGR can reduce engine specific NOx emissions and particle number concentration simultaneously in spark-ignition engine fueled with gasoline and n-butanol blends.
0

Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System

Prabhakar Sharma et al.Jun 13, 2022
Nanofluids have gained significant popularity in the field of sustainable and renewable energy systems. The heat transfer capacity of the working fluid has a huge impact on the efficiency of the renewable energy system. The addition of a small amount of high thermal conductivity solid nanoparticles to a base fluid improves heat transfer. Even though a large amount of research data is available in the literature, some results are contradictory. Many influencing factors, as well as nonlinearity and refutations, make nanofluid research highly challenging and obstruct its potentially valuable uses. On the other hand, data-driven machine learning techniques would be very useful in nanofluid research for forecasting thermophysical features and heat transfer rate, identifying the most influential factors, and assessing the efficiencies of different renewable energy systems. The primary aim of this review study is to look at the features and applications of different machine learning techniques employed in the nanofluid-based renewable energy system, as well as to reveal new developments in machine learning research. A variety of modern machine learning algorithms for nanofluid-based heat transfer studies in renewable and sustainable energy systems are examined, along with their advantages and disadvantages. Artificial neural networks-based model prediction using contemporary commercial software is simple to develop and the most popular. The prognostic capacity may be further improved by combining a marine predator algorithm, genetic algorithm, swarm intelligence optimization, and other intelligent optimization approaches. In addition to the well-known neural networks and fuzzy- and gene-based machine learning techniques, newer ensemble machine learning techniques such as Boosted regression techniques, K-means, K-nearest neighbor (KNN), CatBoost, and XGBoost are gaining popularity due to their improved architectures and adaptabilities to diverse data types. The regularly used neural networks and fuzzy-based algorithms are mostly black-box methods, with the user having little or no understanding of how they function. This is the reason for concern, and ethical artificial intelligence is required.
Load More