NP
Nicholas Parazoo
Author with expertise in Global Methane Emissions and Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
1,132
h-index:
33
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño

Junjie Liu et al.Oct 12, 2017
INTRODUCTION The influence of El Niño on climate is accompanied by large changes to the carbon cycle, and El Niño–induced variability in the carbon cycle has been attributed mainly to the tropical continents. However, owing to a dearth of observations in the tropics, tropical carbon fluxes are poorly quantified, and considerable debate exists over the dominant mechanisms (e.g., plant growth, respiration, fire) and regions (e.g., humid versus semiarid tropics) on the net carbon balance. RATIONALE The launch of the Orbiting Carbon Observatory-2 (OCO-2) shortly before the 2015–2016 El Niño, the second strongest since the 1950s, has provided an opportunity to understand how tropical land carbon fluxes respond to the warm and dry climate characteristics of El Niño conditions. The El Niño events may also provide a natural experiment to study the response of tropical land carbon fluxes to future climate changes, because anomalously warm and dry tropical environments typical of El Niño are expected to be more frequent under most emission scenarios. RESULTS The tropical regions of three continents (South America, Asia, and Africa) had heterogeneous responses to the 2015–2016 El Niño, in terms of both climate drivers and the carbon cycle. The annual mean precipitation over tropical South America and tropical Asia was lower by 3.0σ and 2.8σ, respectively, in 2015 relative to the 2011 La Niña year. Tropical Africa, on the other hand, had near equal precipitation and the same number of dry months between 2015 and 2011; however, surface temperatures were higher by 1.6σ, dominated by the positive anomaly over its eastern and southern regions. In response to the warmer and drier climate anomaly in 2015, the pantropical biosphere released 2.5 ± 0.34 gigatons more carbon into the atmosphere than in 2011, which accounts for 83.3% of the global total 3.0–gigatons of carbon (gigatons C) net biosphere flux differences and 92.6% of the atmospheric CO 2 growth-rate differences between 2015 and 2011. It indicates that the tropical land biosphere flux anomaly was the driver of the highest atmospheric CO 2 growth rate in 2015. The three tropical continents had an approximately even contribution to the pantropical net carbon flux anomaly in 2015, but had diverse dominant processes: gross primary production (GPP) reduced carbon uptake (0.9 ± 0.96 gigatons C) in tropical South America, fire increased carbon release (0.4 ± 0.08 gigatons C) in tropical Asia, and respiration increased carbon release (0.6 ± 1.01 gigatons C) in Africa. We found that most of the excess carbon release in 2015 was associated with either extremely low precipitation or high temperatures, or both. CONCLUSION Our results indicate that the global El Niño effect is a superposition of regionally specific effects. The heterogeneous climate forcing and carbon response over the three tropical continents to the 2015–2016 El Niño challenges previous studies that suggested that a single dominant process determines carbon cycle interannual variability, which could also be due to previous disturbance and soil and vegetation structure. The similarity between the 2015 tropical climate anomaly and the projected climate changes imply that the role of the tropical land as a buffer for fossil fuel emissions may be reduced in the future. The heterogeneous response may reflect differences in temperature and rainfall anomalies, but intrinsic differences in vegetation species, soils, and prior disturbance may contribute as well. A synergistic use of multiple satellite observations and a long time series of spatially resolved fluxes derived from sustained satellite observations will enable tests of these hypotheses, allow for a more process-based understanding, and, ultimately, aid improved carbon-climate model projections. Diverse climate driver anomalies and carbon cycle responses to the 2015–2016 El Niño over the three tropical continents. Schematic of climate anomaly patterns over the three tropical continents and the anomalies of the net carbon flux and its dominant constituent flux (i.e., GPP, respiration, and fire) relative to the 2011 La Niña during the 2015–2016 El Niño. GtC, gigatons C.
0
Paper
Citation399
0
Save
0

Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence

Troy Magney et al.May 28, 2019
Northern hemisphere evergreen forests assimilate a significant fraction of global atmospheric CO2 but monitoring large-scale changes in gross primary production (GPP) in these systems is challenging. Recent advances in remote sensing allow the detection of solar-induced chlorophyll fluorescence (SIF) emission from vegetation, which has been empirically linked to GPP at large spatial scales. This is particularly important in evergreen forests, where traditional remote-sensing techniques and terrestrial biosphere models fail to reproduce the seasonality of GPP. Here, we examined the mechanistic relationship between SIF retrieved from a canopy spectrometer system and GPP at a winter-dormant conifer forest, which has little seasonal variation in canopy structure, needle chlorophyll content, and absorbed light. Both SIF and GPP track each other in a consistent, dynamic fashion in response to environmental conditions. SIF and GPP are well correlated (R2 = 0.62-0.92) with an invariant slope over hourly to weekly timescales. Large seasonal variations in SIF yield capture changes in photoprotective pigments and photosystem II operating efficiency associated with winter acclimation, highlighting its unique ability to precisely track the seasonality of photosynthesis. Our results underscore the potential of new satellite-based SIF products (TROPOMI, OCO-2) as proxies for the timing and magnitude of GPP in evergreen forests at an unprecedented spatiotemporal resolution.
0
Paper
Citation324
0
Save
0

Terrestrial gross primary production inferred from satellite fluorescence and vegetation models

Nicholas Parazoo et al.Jun 9, 2014
Abstract Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar‐induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7–8 Pg C yr −1 from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr −1 ) and enhanced GPP in tropical forests (~3.7 Pg C yr −1 ). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak‐to‐trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40–70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well‐suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution.
0
Paper
Citation194
0
Save
0

Noise reduction for solar-induced fluorescence retrievals using machine learning and principal component analysis: simulations and applications to GOME-2 satellite retrievals

Joanna Joiner et al.May 31, 2024
Abstract We use a spectral-based approach that employs principal component analysis along with a relatively shallow artificial neural network (NN) to substantially reduce noise and other artifacts in terrestrial chlorophyll solar-induced fluorescence (SIF) retrievals. SIF is a very small emission at red and far-red wavelengths that is difficult to measure and is highly sensitive to random errors and systematic artifacts. Our approach relies upon an assumption that a trained NN can effectively reconstruct the total SIF signal from a relatively small number of leading principal components of the satellite-observed far-red radiance spectra without using information from the trailing modes that contain most of the random errors. We test the approach with simulated reflectance spectra produced with a full atmospheric and surface radiative transfer model using different observing and geophysical parameters and various noise levels. The resulting noisy and noise-reduced retrieved SIF values are compared with true values to assess performance. We then apply our noise reduction approach to SIF derived from two different satellite spectrometers. For evaluation, since the truth in this case is unknown, we compare SIF retrievals from two independent sensors with each other. We also compare the noise-reduced SIF temporal variations with those from an independent gross primary product (GPP) product that should display similar variations. Results show that our noise reduction approach improves the capture of SIF seasonal and interannual variability. Our approach should be applicable to many noisy data products derived from spectral measurements. Our methodology does not replace the original retrieval algorithms; rather, the original noisy retrievals are needed as the target for the NN training process. Significance Statement The purpose of this study is to document and demonstrate a machine learning algorithm that is used to effectively reduce noise and artifacts in a satellite data product, solar-induced fluorescence (SIF) from chlorophyll. This is important because SIF retrievals are typically noisy, and the noise limits their ability to be used for diagnosing plant health and productivity. Our results show substantial improvement in SIF retrievals that may lead to new applications. Our approach can be similarly applied to other noisy satellite data products.
0
Paper
Citation1
0
Save
0

A Machine Learning Approach to Produce a Continuous Solar‐Induced Chlorophyll Fluorescence Over the Arctic Ocean

Nima Madani et al.Dec 1, 2024
Abstract Phytoplankton primary production is a crucial component of Arctic Ocean (AO) biogeochemistry, playing a pivotal role in carbon cycling by supporting higher trophic levels and removing atmospheric carbon dioxide. The advent of satellite observations measuring chlorophyll a concentration (Chl_a) has provided unprecedented insights into the distribution of AO phytoplankton, enhancing our ability to assess oceanic net primary production (NPP). However, the optical properties of AO waters differ significantly from those of the lower‐latitude waters, complicating remotely sensed Chl_a retrievals. To mitigate these deficiencies, solar‐induced chlorophyll fluorescence (SIF) has emerged as a valuable tool for gaining physiological insights into the direct photosynthetic processes of the AO. However, the temporal coverage of satellite SIF data makes long‐term analysis of Chl_a photosynthetic activity challenging. In this study, we leverage satellite‐based SIF measurements from 2018 to 2021 to assess their correlation with a set of predictive factors influencing phytoplankton photosynthesis. Generally, observed SIF over the AO showed a higher correlation with normalized fluorescence line height (NFLH) compared to Chl_a. We extended the temporal coverage of the original SIF data to encompass the period from 2004 to 2020. The extended record revealed noticeable differences between SIF, and satellite‐based Chl_a, and NFLH observations. Our novel data set offers a pathway forward to monitor the physiological interactions of phytoplankton with climate changes, promising to significantly improve our understanding of Arctic waters productivity. The application of this data is expected to provide new insights into how phytoplankton respond to environmental shifts, contributing to a more nuanced understanding of their role in high‐latitude marine ecosystems.
0
0
Save
0

Diagnosing Spring Onset Across the North American Arctic‐Boreal Region Using Complementary Satellite Environmental Data Records

Youngwook Kim et al.Aug 1, 2024
Abstract The timing and progression of the spring thaw transition in high northern latitudes (HNL) coincides with warmer temperatures and landscape thawing, promoting increased soil moisture and growing season onset of gross primary productivity (GPP), heterotrophic respiration (HR), and evapotranspiration (ET). However, the relative order and spatial pattern of these events is uncertain due to vast size and remoteness of the HNL. We utilized satellite environmental data records (EDRs) derived from complementary passive microwave and optical sensors to assess the progression of spring transition events across Alaska and Northern Canada from 2016 to 2020. Selected EDRs included land surface and soil freeze‐thaw status, solar‐induced chlorophyll fluorescence (SIF) signifying canopy photosynthesis, root zone soil moisture (RZSM), and GPP, HR, and ET as indicators of ecosystem carbon and water‐energy fluxes. The EDR spring transition maps showed thawing as a precursor to rising RZSM and growing season onset. Thaw timing was closely associated with ecosystem activation from winter dormancy, including seasonal increases in SIF, GPP, and ET. The HR onset occurred closer to soil thawing and prior to GPP activation, reducing spring carbon (CO 2 ) sink potential. The mean duration of the spring transition spanned ∼6 ± 1.5 weeks between initial and final onset events. Spring thaw timing and maximum RZSM were closely related to active layer thickness in HNL permafrost zones, with deeper active layers showing generally earlier thawing and greater RZSM. Our results confirm the utility of combined satellite EDRs for regional monitoring and better understanding of the complexity of the spring transition.
0
0
Save