RZ
Rui Zhang
Author with expertise in Hydrological Modeling and Water Resource Management
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
349
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Crustal Deformation in the India‐Eurasia Collision Zone From 25 Years of GPS Measurements

Gang Zheng et al.Sep 21, 2017
Abstract The India‐Eurasia collision zone is the largest deforming region on the planet; direct measurements of present‐day deformation from Global Positioning System (GPS) have the potential to discriminate between competing models of continental tectonics. But the increasing spatial resolution and accuracy of observations have only led to increasingly complex realizations of competing models. Here we present the most complete, accurate, and up‐to‐date velocity field for India‐Eurasia available, comprising 2576 velocities measured during 1991–2015. The core of our velocity field is from the Crustal Movement Observation Network of China‐I/II: 27 continuous stations observed since 1999; 56 campaign stations observed annually during 1998–2007; 1000 campaign stations observed in 1999, 2001, 2004, and 2007; 260 continuous stations operating since late 2010; and 2000 campaign stations observed in 2009, 2011, 2013, and 2015. We process these data and combine the solutions in a consistent reference frame with stations from the Global Strain Rate Model compilation, then invert for continuous velocity and strain rate fields. We update geodetic slip rates for the major faults (some vary along strike), and find that those along the major Tibetan strike‐slip faults are in good agreement with recent geological estimates. The velocity field shows several large undeforming areas, strain focused around some major faults, areas of diffuse strain, and dilation of the high plateau. We suggest that a new generation of dynamic models incorporating strength variations and strain‐weakening mechanisms is required to explain the key observations. Seismic hazard in much of the region is elevated, not just near the major faults.
0
Paper
Citation348
0
Save
0

The Performance of Landsat-8 and Landsat-9 Data for Water Body Extraction Based on Various Water Indices: A Comparative Analysis

Jie Chen et al.May 31, 2024
The rapid and accurate extraction of water information from satellite imagery has been a crucial topic in remote sensing applications and has important value in water resources management, water environment monitoring, and disaster emergency management. Although the OLI-2 sensor onboard Landsat-9 is similar to the well-known OLI onboard Landsat-8, there were significant differences in the average absolute percentage change in the bands for water detection. Additionally, the performance of Landsat-9 in water body extraction is yet to be fully understood. Therefore, it is crucial to conduct comparative studies to evaluate the water extraction performance of Landsat-9 with Landsat-8. In this study, we analyze the performance of simultaneous Landsat-8 and Landsat-9 data for water body extraction based on eight common water indices (Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI), Augmented Normalized Difference Water Index (ANDWI), Water Index 2015 (WI2015), tasseled cap wetness index (TCW), Automated Water Extraction Index for scenes with shadows (AWEIsh) and without shadows (AWEInsh) and Multi-Band Water Index (MBWI)) to extract water bodies in seven study sites worldwide. The Otsu algorithm is utilized to automatically determine the optimal segmentation threshold for water body extraction. The results showed that (1) Landsat-9 satellite data can be used for water body extraction effectively, with results consistent with those from Landsat-8. The eight selected water indices in this study are applicable to both Landsat-8 and Landsat-9 satellites. (2) The NDWI index shows a larger variability in accuracy compared to other indices when used on Landsat-8 and Landsat-9 imagery. Therefore, additional caution should be exercised when using the NDWI for water body analysis with both Landsat-8 and Landsat-9 satellites simultaneously. (3) For Landsat-8 and Landsat-9 imagery, ratio-based water indices tend to have more omission errors, while difference-based indices are more prone to commission errors. Overall, ratio-based indices exhibit greater variability in overall accuracy, whereas difference-based indices demonstrate lower sensitivity to variations in the study area, showing smaller overall accuracy fluctuations and higher robustness. This study can provide necessary references for the selection of water indices based on the newest Landsat-9 data. The results are crucial for guiding the combined use of Landsat-8 and Landsat-9 for global surface water mapping and understanding its long-term changes.
0
Paper
Citation1
0
Save